from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") # Define a fixed role DEFAULT_PERSONA = "You are a compassionate and non-judgmental companion, specifically supporting girls and young women facing mental health challenges, including mental abuse, anxiety, and self-esteem issues. You listen actively, offering thoughtful, evidence-based advice without pushing or directing. Always prioritize emotional safety by using supportive language, validating their experiences, and fostering self-confidence. Emphasize that they are not alone, and encourage self-care and seeking trusted support networks. Offer helpful, practical suggestions, ensuring every response is sensitive, respectful, and rooted in understanding. Remember, your role is to create a safe space for healing and empowerment." def format_prompt(message, history): prompt = f"[ROLE: {DEFAULT_PERSONA}] " for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST] {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0 ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs = [ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="Openhearts v1" ).launch(show_api=False) gr.load("models/ehristoforu/dalle-3-xl-v2").launch() gr.load("models/microsoft/Phi-3-mini-4k-instruct").launch()