File size: 6,618 Bytes
e70400c
 
ece8c80
882b974
 
 
ece8c80
e70400c
882b974
f58205e
882b974
e70400c
ece8c80
882b974
 
 
 
 
 
 
 
e70400c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
098cfe5
 
 
e70400c
 
 
 
b9dd0a0
e70400c
 
34e2c3f
e70400c
 
 
098cfe5
e70400c
 
 
 
 
 
 
 
 
098cfe5
e70400c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e2c3f
 
 
e70400c
 
 
 
b9dd0a0
e70400c
 
34e2c3f
e70400c
 
 
34e2c3f
e70400c
 
 
34e2c3f
e70400c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef654f1
2d3e7bb
 
 
 
e70400c
 
 
 
b9dd0a0
e70400c
 
34e2c3f
e70400c
 
 
ef654f1
e70400c
 
 
2d3e7bb
e70400c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Standard library imports
import os
import gradio as gr
import spaces



# Local imports
from age_estimation.age_estimation import age_estimation as _age_estimation
from detection.face_detection import face_detection 
from detection.object_detection import object_detection as _object_detection
from utils.ui_utils import update_input_visibility

@spaces.GPU
def age_estimation(input_type, uploaded_image, image_url, base64_string):
    return _age_estimation(input_type, uploaded_image, image_url, base64_string)

@spaces.GPU
def object_detection(input_type, uploaded_image, image_url, base64_string):
    return _object_detection(input_type, uploaded_image, image_url, base64_string)

with gr.Blocks() as demo:
    # Add a title to the interface
    gr.Markdown("# Computer Vision Tools")
    # Create a tab for face detection
    with gr.Tab("Face Detection"):
        # Input Method Selection
        face_input_type = gr.Radio(
            ["Upload File", "Enter URL", "Enter Base64"],
            label="Input Method",
            value="Upload File",  # Default selection
        )

        # Face Detection Method Selection
        face_detection_method = gr.Radio(
            ["OpenCV", "dlib"],
            label="Face Detection Method",
            value="OpenCV",  # Default selection
        )

        # Input Components (initially only file upload is visible)
        with gr.Row():
            face_img_upload = gr.Image(type="pil", label="Upload Image", visible=True)
            face_url_input = gr.Textbox(
                label="Enter Image URL", placeholder="e.g., https://...", visible=False
            )
            face_base64_input = gr.Textbox(
                label="Enter Base64 String",
                placeholder="Enter base64 string here...",
                visible=False,
            )

        # Process Button
        face_process_btn = gr.Button("Process Image")

        # Output Components
        face_image_output = gr.Image(label="Detected Faces Image")
        face_bbox_output = gr.JSON(label="Raw Bounding Box Data")

        # Link radio button change to visibility update function
        face_input_type.change(
            fn=update_input_visibility,
            inputs=[face_input_type],
            outputs=[face_img_upload, face_url_input, face_base64_input],
            queue=False,
            api_name=False,
        )

        # Link process button to the face detection function
        # The face_detection function will now return a tuple
        face_process_btn.click(
            fn=face_detection,
            inputs=[
                face_input_type,
                face_img_upload,
                face_url_input,
                face_base64_input,
                face_detection_method,
            ],
            outputs=[face_image_output, face_bbox_output],
        )
    # Create a tab for age estimation
    with gr.Tab("Age Estimation"):
        # Input Method Selection
        age_input_type = gr.Radio(
            ["Upload File", "Enter URL", "Enter Base64"],
            label="Input Method",
            value="Upload File",  # Default selection
        )

        # Input Components (initially only file upload is visible)
        with gr.Row():
            age_img_upload = gr.Image(type="pil", label="Upload Image", visible=True)
            age_url_input = gr.Textbox(
                label="Enter Image URL", placeholder="e.g., https://...", visible=False
            )
            age_base64_input = gr.Textbox(
                label="Enter Base64 String",
                placeholder="Enter base64 string here...",
                visible=False,
            )

        # Process Button
        age_process_btn = gr.Button("Estimate Age")

        # Output Components
        age_text_output = gr.Textbox(label="Estimated Age Summary")
        age_raw_output = gr.JSON(label="Raw Age Estimation Data")

        # Link radio button change to visibility update function
        age_input_type.change(
            fn=update_input_visibility,
            inputs=[age_input_type],
            outputs=[age_img_upload, age_url_input, age_base64_input],
            queue=False,
            api_name=False,
        )

        # Link process button to the age estimation function
        # The age_estimation function will now return a tuple
        age_process_btn.click(
            fn=age_estimation,
            inputs=[age_input_type, age_img_upload, age_url_input, age_base64_input],
            outputs=[age_text_output, age_raw_output],
        )
    # Create a tab for object detection
    with gr.Tab("Object Detection"):
        # Input Method Selection
        obj_input_type = gr.Radio(
            ["Upload File", "Enter URL", "Enter Base64"],
            label="Input Method",
            value="Upload File",  # Default selection
        )

        # Input Components (initially only file upload is visible)
        with gr.Row():
            obj_img_upload = gr.Image(type="pil", label="Upload Image", visible=True)
            obj_url_input = gr.Textbox(
                label="Enter Image URL", placeholder="e.g., https://...", visible=False
            )
            obj_base64_input = gr.Textbox(
                label="Enter Base64 String",
                placeholder="Enter base64 string here...",
                visible=False,
            )

        # Process Button
        obj_process_btn = gr.Button("Detect Objects")

        # Output Components
        obj_image_output = gr.Image(
            label="Detected Objects Image"
        )  # Updated label for clarity
        obj_raw_output = gr.JSON(label="Raw Object Detection Data")  # Added JSON output

        # Link radio button change to visibility update function
        obj_input_type.change(
            fn=update_input_visibility,
            inputs=[obj_input_type],
            outputs=[obj_img_upload, obj_url_input, obj_base64_input],
            queue=False,
            api_name=False,
        )

        # Link process button to the object detection function
        # The object_detection function now returns a tuple (image, raw_data)
        obj_process_btn.click(
            fn=object_detection,
            inputs=[obj_input_type, obj_img_upload, obj_url_input, obj_base64_input],
            outputs=[obj_image_output, obj_raw_output],  # Updated outputs
        )

    # Launch the Gradio demo
    port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
    import sys

    if "--server_port" in sys.argv:
        port = int(sys.argv[sys.argv.index("--server_port") + 1])
    demo.launch(server_port=port, ssr_mode=True, share=True)