rifatramadhani commited on
Commit
2d3e7bb
·
1 Parent(s): 085be2c
.flake8 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [flake8]
2
+ ignore = E501
3
+ max-line-length = 79
Makefile ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: lint format test
2
+
3
+ lint:
4
+ flake8 .
5
+
6
+ format:
7
+ black .
8
+
9
+ test:
10
+ python tests/test_utils.py
11
+
12
+ all: lint format test
age_estimation/age_estimation.py CHANGED
@@ -1,12 +1,7 @@
1
- import os
2
- import tempfile
3
  import torch
4
- import dlib
5
-
6
- from PIL import Image
7
 
8
  from .model import load_model
9
- from utils.image_utils import load_image, preprocess_image, get_image_from_input
10
  from utils.face_detector import load_face_detector
11
  from .predict import predict_age
12
 
 
 
 
1
  import torch
 
 
 
2
 
3
  from .model import load_model
4
+ from utils.image_utils import preprocess_image, get_image_from_input
5
  from utils.face_detector import load_face_detector
6
  from .predict import predict_age
7
 
age_estimation/predict.py CHANGED
@@ -1,6 +1,5 @@
1
  import cv2
2
  import numpy as np
3
- import dlib
4
  import torch
5
  import torch.nn.functional as F
6
 
 
1
  import cv2
2
  import numpy as np
 
3
  import torch
4
  import torch.nn.functional as F
5
 
app.py CHANGED
@@ -1,8 +1,6 @@
1
  # Standard library imports
2
  import os
3
  import gradio as gr
4
- import torch.nn.functional as F
5
- import torch.nn as nn
6
 
7
  # Local imports
8
  from age_estimation.age_estimation import age_estimation
@@ -139,8 +137,10 @@ with gr.Blocks() as demo:
139
  obj_process_btn = gr.Button("Detect Objects")
140
 
141
  # Output Components
142
- obj_image_output = gr.Image(label="Detected Objects Image") # Updated label for clarity
143
- obj_raw_output = gr.JSON(label="Raw Object Detection Data") # Added JSON output
 
 
144
 
145
  # Link radio button change to visibility update function
146
  obj_input_type.change(
@@ -156,7 +156,7 @@ with gr.Blocks() as demo:
156
  obj_process_btn.click(
157
  fn=object_detection,
158
  inputs=[obj_input_type, obj_img_upload, obj_url_input, obj_base64_input],
159
- outputs=[obj_image_output, obj_raw_output], # Updated outputs
160
  )
161
 
162
  # Launch the Gradio demo
 
1
  # Standard library imports
2
  import os
3
  import gradio as gr
 
 
4
 
5
  # Local imports
6
  from age_estimation.age_estimation import age_estimation
 
137
  obj_process_btn = gr.Button("Detect Objects")
138
 
139
  # Output Components
140
+ obj_image_output = gr.Image(
141
+ label="Detected Objects Image"
142
+ ) # Updated label for clarity
143
+ obj_raw_output = gr.JSON(label="Raw Object Detection Data") # Added JSON output
144
 
145
  # Link radio button change to visibility update function
146
  obj_input_type.change(
 
156
  obj_process_btn.click(
157
  fn=object_detection,
158
  inputs=[obj_input_type, obj_img_upload, obj_url_input, obj_base64_input],
159
+ outputs=[obj_image_output, obj_raw_output], # Updated outputs
160
  )
161
 
162
  # Launch the Gradio demo
detection/face_detection.py CHANGED
@@ -3,11 +3,9 @@ import os
3
 
4
  # Third-party imports
5
  import cv2
6
- import numpy as np
7
- from PIL import Image
8
 
9
  # Local imports
10
- from utils.image_utils import load_image, preprocess_image, get_image_from_input
11
  from utils.face_detector import (
12
  load_face_detector,
13
  ) # Assuming this is the dlib detector loader
 
3
 
4
  # Third-party imports
5
  import cv2
 
 
6
 
7
  # Local imports
8
+ from utils.image_utils import preprocess_image, get_image_from_input
9
  from utils.face_detector import (
10
  load_face_detector,
11
  ) # Assuming this is the dlib detector loader
detection/object_detection.py CHANGED
@@ -1,10 +1,7 @@
1
  # Standard library imports
2
  # (Add any necessary imports for future object detection implementation)
3
- import json
4
 
5
  # Third-party imports
6
- from PIL import Image
7
- import numpy as np
8
  from ultralytics import YOLO
9
 
10
  # Local imports
@@ -19,7 +16,7 @@ try:
19
  print("YOLO model loaded successfully.")
20
  except Exception as e:
21
  print(f"Error loading YOLO model: {e}")
22
- model = None # Set model to None if loading fails
23
 
24
 
25
  def object_detection(input_type, uploaded_image, image_url, base64_string):
@@ -39,7 +36,7 @@ def object_detection(input_type, uploaded_image, image_url, base64_string):
39
  """
40
  if model is None:
41
  print("YOLO model is not loaded. Cannot perform object detection.")
42
- return None, None # Return None for both outputs
43
 
44
  image = None
45
  input_value = None
@@ -54,22 +51,22 @@ def object_detection(input_type, uploaded_image, image_url, base64_string):
54
 
55
  elif input_type == "Enter Base64" and base64_string and base64_string.strip():
56
  input_value = base64_string
57
- print(f"Using Base64 string for object detection") # Debug print
58
 
59
  else:
60
  print("No valid input provided for object detection based on selected type.")
61
- return None, None # Return None for both outputs
62
 
63
  # If input_value is set (URL or Base64), use load_image
64
  if input_value:
65
  image = load_image(input_value)
66
  if image is None:
67
- return None, None # load_image failed
68
 
69
  # Now 'image' should be a PIL Image or None
70
  if image is None:
71
  print("Image is None after loading/selection for object detection.")
72
- return None, None # Return None for both outputs
73
 
74
  try:
75
  # Preprocess the image (convert PIL to numpy, ensure RGB)
@@ -85,24 +82,37 @@ def object_detection(input_type, uploaded_image, image_url, base64_string):
85
  # box.xywh contains [x_center, y_center, width, height]
86
  # box.conf contains confidence score
87
  # box.cls contains class index
88
- x_center, y_center, width, height = [round(float(coord)) for coord in box.xywh[0].tolist()] # Changed to xywh
 
 
89
  confidence = round(float(box.conf[0]), 4)
90
  class_id = int(box.cls[0])
91
- class_name = model.names[class_id] if model.names else str(class_id) # Get class name if available
92
-
93
- raw_data.append({
94
- "box": {"x": x_center, "y": y_center, "w": width, "h": height}, # Updated keys
95
- "confidence": confidence,
96
- "class_id": class_id,
97
- "class_name": class_name
98
- })
 
 
 
 
 
 
 
 
 
99
 
100
  # Draw results on the image
101
- result_image_np = results[0].plot() if results else processed_image_np # Plot if results exist
 
 
102
 
103
  print("Object detection performed successfully.")
104
- return result_image_np, raw_data # Return both the image and raw data
105
 
106
  except Exception as e:
107
  print(f"Error during YOLO object detection: {e}")
108
- return None, None # Return None for both outputs
 
1
  # Standard library imports
2
  # (Add any necessary imports for future object detection implementation)
 
3
 
4
  # Third-party imports
 
 
5
  from ultralytics import YOLO
6
 
7
  # Local imports
 
16
  print("YOLO model loaded successfully.")
17
  except Exception as e:
18
  print(f"Error loading YOLO model: {e}")
19
+ model = None # Set model to None if loading fails
20
 
21
 
22
  def object_detection(input_type, uploaded_image, image_url, base64_string):
 
36
  """
37
  if model is None:
38
  print("YOLO model is not loaded. Cannot perform object detection.")
39
+ return None, None # Return None for both outputs
40
 
41
  image = None
42
  input_value = None
 
51
 
52
  elif input_type == "Enter Base64" and base64_string and base64_string.strip():
53
  input_value = base64_string
54
+ print("Using Base64 string for object detection") # Debug print
55
 
56
  else:
57
  print("No valid input provided for object detection based on selected type.")
58
+ return None, None # Return None for both outputs
59
 
60
  # If input_value is set (URL or Base64), use load_image
61
  if input_value:
62
  image = load_image(input_value)
63
  if image is None:
64
+ return None, None # load_image failed
65
 
66
  # Now 'image' should be a PIL Image or None
67
  if image is None:
68
  print("Image is None after loading/selection for object detection.")
69
+ return None, None # Return None for both outputs
70
 
71
  try:
72
  # Preprocess the image (convert PIL to numpy, ensure RGB)
 
82
  # box.xywh contains [x_center, y_center, width, height]
83
  # box.conf contains confidence score
84
  # box.cls contains class index
85
+ x_center, y_center, width, height = [
86
+ round(float(coord)) for coord in box.xywh[0].tolist()
87
+ ] # Changed to xywh
88
  confidence = round(float(box.conf[0]), 4)
89
  class_id = int(box.cls[0])
90
+ class_name = (
91
+ model.names[class_id] if model.names else str(class_id)
92
+ ) # Get class name if available
93
+
94
+ raw_data.append(
95
+ {
96
+ "box": {
97
+ "x": x_center,
98
+ "y": y_center,
99
+ "w": width,
100
+ "h": height,
101
+ }, # Updated keys
102
+ "confidence": confidence,
103
+ "class_id": class_id,
104
+ "class_name": class_name,
105
+ }
106
+ )
107
 
108
  # Draw results on the image
109
+ result_image_np = (
110
+ results[0].plot() if results else processed_image_np
111
+ ) # Plot if results exist
112
 
113
  print("Object detection performed successfully.")
114
+ return result_image_np, raw_data # Return both the image and raw data
115
 
116
  except Exception as e:
117
  print(f"Error during YOLO object detection: {e}")
118
+ return None, None # Return None for both outputs
tests/test_utils.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import unittest
2
+ from utils.image_utils import load_image, preprocess_image, get_image_from_input
3
+ from utils.ui_utils import update_input_visibility
4
+ import numpy as np
5
+ from PIL import Image
6
+ import io
7
+ import unittest.mock
8
+ import urllib.request # Import urllib.request for patching
9
+ import os # Keep os for file cleanup
10
+
11
+
12
+ # Mock object to mimic gr.update return value
13
+ class MockGradioUpdateReturn:
14
+ def __init__(self, visible=None):
15
+ self.visible = visible
16
+
17
+
18
+ # Simple mock class for urllib.request.urlopen response
19
+ class SimpleMockURLResponse:
20
+ def __init__(self, content):
21
+ self._content = content
22
+
23
+ def read(self):
24
+ return self._content
25
+
26
+ def __enter__(self):
27
+ return self
28
+
29
+ def __exit__(self, exc_type, exc_val, exc_tb):
30
+ pass
31
+
32
+
33
+ # Use patch as a class decorator for gr.update
34
+ class TestUtils(unittest.TestCase):
35
+
36
+ # Patch urllib.request.urlopen for this specific test
37
+ @unittest.mock.patch("urllib.request.urlopen")
38
+ def test_load_image_from_url(
39
+ self, mock_urlopen
40
+ ): # Added mock_urlopen and mock_gr_update
41
+ # Create a dummy image and get its bytes
42
+ dummy_image = Image.new("RGB", (10, 10), color="purple")
43
+ byte_arr = io.BytesIO()
44
+ dummy_image.save(byte_arr, format="PNG")
45
+ mock_image_bytes = byte_arr.getvalue()
46
+
47
+ # Configure the mock urlopen response using SimpleMockURLResponse
48
+ mock_urlopen.return_value = SimpleMockURLResponse(mock_image_bytes)
49
+
50
+ url = "https://www.example.com/dummy_image.png" # Use a dummy URL
51
+ image = load_image(url)
52
+ self.assertIsNotNone(image)
53
+ self.assertIsInstance(image, Image.Image)
54
+ self.assertEqual(image.size, (10, 10))
55
+ mock_urlopen.assert_called_once_with(url) # Verify urlopen was called
56
+
57
+ def test_load_image_from_base64(self): # Added mock_gr_update
58
+ # A simple 1x1 black PNG as a base64 string
59
+ base64_string = "" # Corrected padding
60
+ image = load_image(base64_string)
61
+ self.assertIsNotNone(image)
62
+ self.assertIsInstance(image, Image.Image)
63
+ self.assertEqual(image.size, (1, 1))
64
+
65
+ def test_load_image_from_file(self): # Added mock_gr_update
66
+ # Create a dummy image file for testing
67
+ dummy_image = Image.new("RGB", (10, 10), color="red")
68
+ dummy_file_path = "dummy_test_image.png"
69
+ dummy_image.save(dummy_file_path)
70
+
71
+ image = load_image(dummy_file_path)
72
+ self.assertIsNotNone(image)
73
+ self.assertIsInstance(image, Image.Image)
74
+ self.assertEqual(image.size, (10, 10))
75
+
76
+ # Clean up the dummy file
77
+ os.remove(dummy_file_path)
78
+
79
+ @unittest.mock.patch("urllib.request.urlopen")
80
+ def test_load_image_invalid_url(
81
+ self, mock_urlopen
82
+ ): # Added mock_urlopen and mock_gr_update
83
+ # Configure the mock urlopen to raise an exception
84
+ mock_urlopen.side_effect = urllib.error.URLError("Simulated network error")
85
+
86
+ url = "http://invalid.url/image.jpg"
87
+ image = load_image(url)
88
+ self.assertIsNone(image)
89
+ mock_urlopen.assert_called_once_with(url)
90
+
91
+ def test_load_image_invalid_base64(self): # Added mock_gr_update
92
+ base64_string = ""
93
+ image = load_image(base64_string)
94
+ self.assertIsNone(image)
95
+
96
+ def test_preprocess_image(self): # Added mock_gr_update
97
+ # Create a dummy PIL image
98
+ dummy_image = Image.new("RGB", (20, 20), color="blue")
99
+ processed_image = preprocess_image(dummy_image)
100
+ self.assertIsNotNone(processed_image)
101
+ self.assertIsInstance(processed_image, np.ndarray)
102
+ self.assertEqual(processed_image.shape, (20, 20, 3)) # Check shape for RGB
103
+
104
+ @unittest.mock.patch("urllib.request.urlopen")
105
+ def test_get_image_from_input_url(
106
+ self, mock_urlopen
107
+ ): # Added mock_urlopen and mock_gr_update
108
+ # Create a dummy image and get its bytes
109
+ dummy_image = Image.new("RGB", (30, 30), color="orange")
110
+ byte_arr = io.BytesIO()
111
+ dummy_image.save(byte_arr, format="PNG")
112
+ mock_image_bytes = byte_arr.getvalue()
113
+
114
+ # Configure the mock urlopen response using SimpleMockURLResponse
115
+ mock_urlopen.return_value = SimpleMockURLResponse(mock_image_bytes)
116
+
117
+ url = "https://www.example.com/another_dummy_image.png"
118
+ image = get_image_from_input("Enter URL", None, url, "")
119
+ self.assertIsNotNone(image)
120
+ self.assertIsInstance(image, Image.Image)
121
+ self.assertEqual(image.size, (30, 30))
122
+ mock_urlopen.assert_called_once_with(url)
123
+
124
+ def test_get_image_from_input_upload(self): # Added mock_gr_update
125
+ # Mock an uploaded PIL image
126
+ mock_uploaded_image = Image.new("RGB", (30, 30), color="green")
127
+ image = get_image_from_input("Upload File", mock_uploaded_image, "", "")
128
+ self.assertIsNotNone(image)
129
+ self.assertIsInstance(image, Image.Image)
130
+ self.assertEqual(image.size, (30, 30))
131
+
132
+ def test_get_image_from_input_base64(self): # Added mock_gr_update
133
+ base64_string = "" # Corrected padding
134
+ image = get_image_from_input("Enter Base64", None, "", base64_string)
135
+ self.assertIsNotNone(image)
136
+ self.assertIsInstance(image, Image.Image)
137
+ self.assertEqual(image.size, (1, 1))
138
+
139
+ def test_get_image_from_input_no_input(self): # Added mock_gr_update
140
+ image = get_image_from_input("Upload File", None, "", "")
141
+ self.assertIsNone(image)
142
+
143
+ def test_get_image_from_input_invalid_type(self): # Added mock_gr_update
144
+ image = get_image_from_input(
145
+ "Invalid Type", Image.new("RGB", (10, 10)), "url", "base64"
146
+ )
147
+ self.assertIsNone(image)
148
+
149
+ # Tests for update_input_visibility now use the class-level patch
150
+ # Configure the side_effect of mock_gr_update to return specific MockGradioUpdateReturn objects
151
+ @unittest.mock.patch("gradio.update")
152
+ def test_update_input_visibility_upload(
153
+ self, mock_gr_update
154
+ ): # Added mock_gr_update
155
+ mock_gr_update.side_effect = [
156
+ MockGradioUpdateReturn(visible=True),
157
+ MockGradioUpdateReturn(visible=False),
158
+ MockGradioUpdateReturn(visible=False),
159
+ ]
160
+ updates = update_input_visibility("Upload File")
161
+ self.assertEqual(len(updates), 3)
162
+ self.assertTrue(updates[0].visible)
163
+ self.assertFalse(updates[1].visible)
164
+ self.assertFalse(updates[2].visible)
165
+
166
+ @unittest.mock.patch("gradio.update")
167
+ def test_update_input_visibility_url(self, mock_gr_update): # Added mock_gr_update
168
+ mock_gr_update.side_effect = [
169
+ MockGradioUpdateReturn(visible=False),
170
+ MockGradioUpdateReturn(visible=True),
171
+ MockGradioUpdateReturn(visible=False),
172
+ ]
173
+ updates = update_input_visibility("Enter URL")
174
+ self.assertEqual(len(updates), 3)
175
+ self.assertFalse(updates[0].visible)
176
+ self.assertTrue(updates[1].visible)
177
+ self.assertFalse(updates[2].visible)
178
+
179
+ @unittest.mock.patch("gradio.update")
180
+ def test_update_input_visibility_base64(
181
+ self, mock_gr_update
182
+ ): # Added mock_gr_update
183
+ mock_gr_update.side_effect = [
184
+ MockGradioUpdateReturn(visible=False),
185
+ MockGradioUpdateReturn(visible=False),
186
+ MockGradioUpdateReturn(visible=True),
187
+ ]
188
+ updates = update_input_visibility("Enter Base64")
189
+ self.assertEqual(len(updates), 3)
190
+ self.assertFalse(updates[0].visible)
191
+ self.assertFalse(updates[1].visible)
192
+ self.assertTrue(updates[2].visible)
193
+
194
+ @unittest.mock.patch("gradio.update")
195
+ def test_update_input_visibility_default(
196
+ self, mock_gr_update
197
+ ): # Added mock_gr_update
198
+ mock_gr_update.side_effect = [
199
+ MockGradioUpdateReturn(visible=True),
200
+ MockGradioUpdateReturn(visible=False),
201
+ MockGradioUpdateReturn(visible=False),
202
+ ]
203
+ updates = update_input_visibility("Invalid Choice")
204
+ self.assertEqual(len(updates), 3)
205
+ self.assertTrue(updates[0].visible)
206
+ self.assertFalse(updates[1].visible)
207
+ self.assertFalse(updates[2].visible)
208
+
209
+
210
+ if __name__ == "__main__":
211
+ unittest.main()
utils/face_detector.py CHANGED
@@ -1,5 +1,6 @@
1
  import dlib
2
 
 
3
  def load_face_detector():
4
  """
5
  Loads the dlib face detector.
 
1
  import dlib
2
 
3
+
4
  def load_face_detector():
5
  """
6
  Loads the dlib face detector.
utils/image_utils.py CHANGED
@@ -6,7 +6,7 @@ import urllib.request
6
  # Third-party imports
7
  from PIL import Image
8
  import numpy as np
9
- import cv2 # preprocess_image uses cv2.cvtColor, so it's needed here
10
 
11
  def load_image(image_path):
12
  """
@@ -50,12 +50,13 @@ def preprocess_image(image):
50
  """
51
  # Ensure image is a PIL Image before converting
52
  if not isinstance(image, Image.Image):
53
- image = Image.fromarray(image)
54
 
55
  image = image.convert("RGB")
56
  image = np.array(image)
57
  return image
58
 
 
59
  def get_image_from_input(input_type, uploaded_image, image_url, base64_string):
60
  """
61
  Centralized function to get an image from various input types.
@@ -73,31 +74,31 @@ def get_image_from_input(input_type, uploaded_image, image_url, base64_string):
73
  input_value = None
74
 
75
  if input_type == "Upload File" and uploaded_image is not None:
76
- image = uploaded_image # This is a PIL Image from gr.Image(type="pil")
77
- print("Using uploaded image (PIL)") # Debug print
78
 
79
  elif input_type == "Enter URL" and image_url and image_url.strip():
80
  input_value = image_url
81
- print(f"Using URL: {input_value}") # Debug print
82
 
83
  elif input_type == "Enter Base64" and base64_string and base64_string.strip():
84
  input_value = base64_string
85
- print(f"Using Base64 string") # Debug print
86
 
87
  else:
88
  print("No valid input provided based on selected type.")
89
- return None # No valid input
90
 
91
  # If input_value is set (URL or Base64), use the local load_image
92
  if input_value:
93
  image = load_image(input_value)
94
  if image is None:
95
  print("Error: Could not load image from provided input.")
96
- return None # load_image failed
97
 
98
  # Now 'image' should be a PIL Image or None
99
  if image is None:
100
  print("Image is None after loading/selection.")
101
  return None
102
 
103
- return image
 
6
  # Third-party imports
7
  from PIL import Image
8
  import numpy as np
9
+
10
 
11
  def load_image(image_path):
12
  """
 
50
  """
51
  # Ensure image is a PIL Image before converting
52
  if not isinstance(image, Image.Image):
53
+ image = Image.fromarray(image)
54
 
55
  image = image.convert("RGB")
56
  image = np.array(image)
57
  return image
58
 
59
+
60
  def get_image_from_input(input_type, uploaded_image, image_url, base64_string):
61
  """
62
  Centralized function to get an image from various input types.
 
74
  input_value = None
75
 
76
  if input_type == "Upload File" and uploaded_image is not None:
77
+ image = uploaded_image # This is a PIL Image from gr.Image(type="pil")
78
+ print("Using uploaded image (PIL)") # Debug print
79
 
80
  elif input_type == "Enter URL" and image_url and image_url.strip():
81
  input_value = image_url
82
+ print(f"Using URL: {input_value}") # Debug print
83
 
84
  elif input_type == "Enter Base64" and base64_string and base64_string.strip():
85
  input_value = base64_string
86
+ print("Using Base64 string") # Debug print
87
 
88
  else:
89
  print("No valid input provided based on selected type.")
90
+ return None # No valid input
91
 
92
  # If input_value is set (URL or Base64), use the local load_image
93
  if input_value:
94
  image = load_image(input_value)
95
  if image is None:
96
  print("Error: Could not load image from provided input.")
97
+ return None # load_image failed
98
 
99
  # Now 'image' should be a PIL Image or None
100
  if image is None:
101
  print("Image is None after loading/selection.")
102
  return None
103
 
104
+ return image
utils/ui_utils.py CHANGED
@@ -1,6 +1,7 @@
1
  # Utility functions for UI components
2
  import gradio as gr
3
 
 
4
  def update_input_visibility(choice):
5
  """
6
  Returns updates to the visibility of input components based on the selected input method.
@@ -29,9 +30,9 @@ def update_input_visibility(choice):
29
  gr.update(visible=False),
30
  gr.update(visible=True),
31
  )
32
- else: # Default or unexpected
33
- return (
34
  gr.update(visible=True),
35
  gr.update(visible=False),
36
  gr.update(visible=False),
37
- )
 
1
  # Utility functions for UI components
2
  import gradio as gr
3
 
4
+
5
  def update_input_visibility(choice):
6
  """
7
  Returns updates to the visibility of input components based on the selected input method.
 
30
  gr.update(visible=False),
31
  gr.update(visible=True),
32
  )
33
+ else: # Default or unexpected
34
+ return (
35
  gr.update(visible=True),
36
  gr.update(visible=False),
37
  gr.update(visible=False),
38
+ )