Spaces:
Running
Running
File size: 15,632 Bytes
24001ab 4ddf4f2 09ec7bd 2f2c931 24001ab 4ddf4f2 1378b3b 65a487f 09ec7bd 195dc2b bae8b12 2f2c931 7f3c462 6d30421 4ddf4f2 c2e746b 4ddf4f2 1378b3b 09ec7bd 1378b3b 4dd02a3 6d30421 0196abc bae8b12 2f2c931 195dc2b 2f2c931 195dc2b 7b17bf9 195dc2b bae8b12 195dc2b 7f3c462 2f2c931 195dc2b 2f2c931 195dc2b 2f2c931 195dc2b 4ddf4f2 55b9615 195dc2b 4ddf4f2 bae8b12 7f3c462 bae8b12 3c91df4 bae8b12 195dc2b bae8b12 195dc2b bae8b12 195dc2b bae8b12 195dc2b bae8b12 195dc2b bae8b12 195dc2b bae8b12 195dc2b 55b9615 195dc2b bae8b12 3c91df4 bae8b12 195dc2b bae8b12 195dc2b bae8b12 195dc2b 09ec7bd 195dc2b 3c91df4 195dc2b 3c91df4 195dc2b 3c91df4 195dc2b 09ec7bd bae8b12 24001ab 09ec7bd 195dc2b 09ec7bd 195dc2b 24001ab 2f2c931 3c91df4 24001ab 195dc2b 24001ab 6d30421 1378b3b 24001ab 1378b3b 7f3c462 195dc2b 7f3c462 55b9615 2f2c931 195dc2b 6d30421 195dc2b c2e746b ca7d12d 195dc2b ca7d12d 195dc2b 24001ab 1378b3b 7f3c462 195dc2b 7f3c462 2f2c931 195dc2b 6d30421 2f2c931 195dc2b 2f2c931 195dc2b 4ddf4f2 24001ab 195dc2b 6d30421 2f2c931 3c91df4 195dc2b 6d30421 24001ab 3c91df4 195dc2b 3c91df4 1378b3b 195dc2b 6d30421 24001ab 195dc2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
# import os
# import time
# from fastapi import FastAPI,Request
# from fastapi.responses import HTMLResponse
# from fastapi.staticfiles import StaticFiles
# from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# from pydantic import BaseModel
# from fastapi.responses import JSONResponse
# import uuid # for generating unique IDs
# import datetime
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.templating import Jinja2Templates
# from huggingface_hub import InferenceClient
# import json
# import re
# from gradio_client import Client
# from simple_salesforce import Salesforce, SalesforceLogin
# from llama_index.llms.huggingface import HuggingFaceLLM
# # from llama_index.llms.huggingface import HuggingFaceInferenceAPI
# # Define Pydantic model for incoming request body
# class MessageRequest(BaseModel):
# message: str
# repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
# llm_client = InferenceClient(
# model=repo_id,
# token=os.getenv("HF_TOKEN"),
# )
# os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
# username = os.getenv("username")
# password = os.getenv("password")
# security_token = os.getenv("security_token")
# domain = os.getenv("domain")# Using sandbox environment
# session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)
# # Create Salesforce object
# sf = Salesforce(instance=sf_instance, session_id=session_id)
# app = FastAPI()
# @app.middleware("http")
# async def add_security_headers(request: Request, call_next):
# response = await call_next(request)
# response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
# response.headers["X-Frame-Options"] = "ALLOWALL"
# return response
# # Allow CORS requests from any domain
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"],
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# @app.get("/favicon.ico")
# async def favicon():
# return HTMLResponse("") # or serve a real favicon if you have one
# app.mount("/static", StaticFiles(directory="static"), name="static")
# templates = Jinja2Templates(directory="static")
# # Configure Llama index settings
# Settings.llm = HuggingFaceLLM(
# model_name="meta-llama/Meta-Llama-3-8B-Instruct",
# tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
# context_window=3000,
# token=os.getenv("HF_TOKEN"),
# max_new_tokens=512,
# generate_kwargs={"temperature": 0.1},
# )
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="BAAI/bge-small-en-v1.5"
# )
# PERSIST_DIR = "db"
# PDF_DIRECTORY = 'data'
# # Ensure directories exist
# os.makedirs(PDF_DIRECTORY, exist_ok=True)
# os.makedirs(PERSIST_DIR, exist_ok=True)
# chat_history = []
# current_chat_history = []
# def data_ingestion_from_directory():
# documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
# storage_context = StorageContext.from_defaults()
# index = VectorStoreIndex.from_documents(documents)
# index.storage_context.persist(persist_dir=PERSIST_DIR)
# def initialize():
# start_time = time.time()
# data_ingestion_from_directory() # Process PDF ingestion at startup
# print(f"Data ingestion time: {time.time() - start_time} seconds")
# def split_name(full_name):
# # Split the name by spaces
# words = full_name.strip().split()
# # Logic for determining first name and last name
# if len(words) == 1:
# first_name = ''
# last_name = words[0]
# elif len(words) == 2:
# first_name = words[0]
# last_name = words[1]
# else:
# first_name = words[0]
# last_name = ' '.join(words[1:])
# return first_name, last_name
# initialize() # Run initialization tasks
# def handle_query(query):
# chat_text_qa_msgs = [
# (
# "user",
# """
# You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only
# {context_str}
# Question:
# {query_str}
# """
# )
# ]
# text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
# index = load_index_from_storage(storage_context)
# context_str = ""
# for past_query, response in reversed(current_chat_history):
# if past_query.strip():
# context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
# query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
# answer = query_engine.query(query)
# if hasattr(answer, 'response'):
# response=answer.response
# elif isinstance(answer, dict) and 'response' in answer:
# response =answer['response']
# else:
# response ="Sorry, I couldn't find an answer."
# current_chat_history.append((query, response))
# return response
# @app.get("/ch/{id}", response_class=HTMLResponse)
# async def load_chat(request: Request, id: str):
# return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
# # Route to save chat history
# @app.post("/hist/")
# async def save_chat_history(history: dict):
# # Check if 'userId' is present in the incoming dictionary
# user_id = history.get('userId')
# print(user_id)
# # Ensure user_id is defined before proceeding
# if user_id is None:
# return {"error": "userId is required"}, 400
# # Construct the chat history string
# hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
# hist = "You are a Redfernstech summarize model. Your aim is to use this conversation to identify user interests solely based on that conversation: " + hist
# print(hist)
# # Get the summarized result from the client model
# result = hist
# try:
# sf.Lead.update(user_id, {'Description': result})
# except Exception as e:
# return {"error": f"Failed to update lead: {str(e)}"}, 500
# return {"summary": result, "message": "Chat history saved"}
# @app.post("/webhook")
# async def receive_form_data(request: Request):
# form_data = await request.json()
# # Log in to Salesforce
# first_name, last_name = split_name(form_data['name'])
# data = {
# 'FirstName': first_name,
# 'LastName': last_name,
# 'Description': 'hii', # Static description
# 'Company': form_data['company'], # Assuming company is available in form_data
# 'Phone': form_data['phone'].strip(), # Phone from form data
# 'Email': form_data['email'], # Email from form data
# }
# a=sf.Lead.create(data)
# # Generate a unique ID (for tracking user)
# unique_id = a['id']
# # Here you can do something with form_data like saving it to a database
# print("Received form data:", form_data)
# # Send back the unique id to the frontend
# return JSONResponse({"id": unique_id})
# @app.post("/chat/")
# async def chat(request: MessageRequest):
# message = request.message # Access the message from the request body
# response = handle_query(message) # Process the message
# message_data = {
# "sender": "User",
# "message": message,
# "response": response,
# "timestamp": datetime.datetime.now().isoformat()
# }
# chat_history.append(message_data)
# return {"response": response}
# @app.get("/")
# def read_root():
# return {"message": "Welcome to the API"}
import os
import datetime
import json
import logging
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from simple_salesforce import Salesforce, SalesforceLogin
from langchain_groq import ChatGroq
from langchain_core.prompts import ChatPromptTemplate
from llama_index.core import StorageContext, VectorStoreIndex, SimpleDirectoryReader, Settings, load_index_from_storage
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class MessageRequest(BaseModel):
message: str
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="static")
required_env_vars = ["CHATGROQ_API_KEY", "username", "password", "security_token", "domain", "HF_TOKEN"]
for var in required_env_vars:
if not os.getenv(var):
logger.error(f"Missing environment variable: {var}")
raise ValueError(f"Environment variable {var} is not set")
# LLM & Embedding Setup
GROQ_API_KEY = os.getenv("CHATGROQ_API_KEY")
llm = ChatGroq(model_name="llama3-8b-8192", api_key=GROQ_API_KEY, temperature=0.1, max_tokens=50)
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
# Salesforce setup
sf = None
try:
session_id, sf_instance = SalesforceLogin(
username=os.getenv("username"),
password=os.getenv("password"),
security_token=os.getenv("security_token"),
domain=os.getenv("domain")
)
sf = Salesforce(instance=sf_instance, session_id=session_id)
logger.info("Salesforce connected.")
except Exception as e:
logger.warning(f"Salesforce connection failed: {e}")
chat_history = []
current_chat_history = []
MAX_HISTORY_SIZE = 100
PDF_DIRECTORY = "data"
PERSIST_DIR = "db"
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
def data_ingestion_from_directory():
try:
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
if not documents:
logger.warning("No documents found in PDF_DIRECTORY")
return
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
index.storage_context.persist(persist_dir=PERSIST_DIR)
logger.info("Data ingestion and embedding complete.")
except Exception as e:
logger.error(f"Data ingestion failed: {e}")
raise HTTPException(status_code=500, detail="Data ingestion failed")
def initialize():
try:
data_ingestion_from_directory()
except Exception as e:
logger.error(f"Initialization error: {e}")
raise HTTPException(status_code=500, detail="Startup initialization failed")
initialize()
def handle_query(query: str) -> str:
chat_context = ""
for past_query, response in reversed(current_chat_history[-10:]):
chat_context += f"User: {past_query}\nBot: {response}\n"
# Load index
try:
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
query_engine = index.as_query_engine(similarity_top_k=2)
retrieved = query_engine.query(query)
doc_context = getattr(retrieved, 'response', "No relevant documents found.")
except Exception as e:
logger.error(f"Retrieval error: {e}")
doc_context = "No relevant documents found."
# Prompt template
prompt_template = ChatPromptTemplate.from_messages([
("system", """
You are a helpful and professional company chatbot.
Answer user queries based on the provided document context and chat history.
If you are unsure about the answer, politely respond with "I'm sorry, I don't know that yet."
Document Context:
{doc_context}
Chat History:
{chat_context}
Question:
{query}
""")
])
prompt = prompt_template.format(doc_context=doc_context, chat_context=chat_context, query=query)
try:
response = llm.invoke(prompt)
response_text = response.content.strip()
if "I'm sorry" not in response_text and len(response_text.strip()) < 3:
response_text = "I'm sorry, I don't know that yet."
except Exception as e:
logger.error(f"Groq API Error: {e}")
response_text = "I'm sorry, I don't know that yet."
if len(current_chat_history) >= MAX_HISTORY_SIZE:
current_chat_history.pop(0)
current_chat_history.append((query, response_text))
return response_text
@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
@app.post("/hist/")
async def save_chat_history(history: dict):
if not sf:
return JSONResponse({"error": "Salesforce not connected"}, status_code=503)
user_id = history.get('userId')
if not user_id:
return JSONResponse({"error": "userId missing"}, status_code=400)
hist = '\n'.join([f"{entry['sender']}: {entry['message']}" for entry in history.get("history", [])])
summary = "This is the chat summary: " + hist
try:
sf.Lead.update(user_id, {'Description': summary})
return {"summary": summary, "message": "Chat history saved"}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/webhook")
async def receive_form_data(request: Request):
if not sf:
return JSONResponse({"error": "Salesforce not connected"}, status_code=503)
try:
form_data = await request.json()
except json.JSONDecodeError:
return JSONResponse({"error": "Invalid JSON"}, status_code=400)
first_name, last_name = split_name(form_data.get("name", ""))
lead_data = {
"FirstName": first_name,
"LastName": last_name,
"Company": form_data.get("company", ""),
"Phone": form_data.get("phone", ""),
"Email": form_data.get("email", ""),
"Description": "Lead from website form"
}
try:
result = sf.Lead.create(lead_data)
return {"id": result.get("id")}
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/chat/")
async def chat(request: MessageRequest):
message = request.message
response = handle_query(message)
chat_entry = {
"sender": "User",
"message": message,
"response": response,
"timestamp": datetime.datetime.now().isoformat()
}
if len(chat_history) >= MAX_HISTORY_SIZE:
chat_history.pop(0)
chat_history.append(chat_entry)
return {"response": response}
@app.get("/health")
async def health_check():
try:
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
load_index_from_storage(storage_context)
return {"status": "healthy"}
except Exception as e:
return {"status": "unhealthy", "error": str(e)}
@app.get("/")
def read_root():
return {"message": "Welcome to the company chatbot API"}
def split_name(full_name):
parts = full_name.strip().split()
if len(parts) == 1:
return '', parts[0]
return parts[0], ' '.join(parts[1:])
|