Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -236,6 +236,8 @@ from fastapi.templating import Jinja2Templates
|
|
236 |
from simple_salesforce import Salesforce, SalesforceLogin
|
237 |
from langchain_groq import ChatGroq
|
238 |
from langchain_core.prompts import ChatPromptTemplate
|
|
|
|
|
239 |
|
240 |
# Configure logging
|
241 |
logging.basicConfig(level=logging.INFO)
|
@@ -262,7 +264,7 @@ app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
262 |
templates = Jinja2Templates(directory="static")
|
263 |
|
264 |
# Validate environment variables
|
265 |
-
required_env_vars = ["CHATGROQ_API_KEY", "username", "password", "security_token", "domain"]
|
266 |
for var in required_env_vars:
|
267 |
if not os.getenv(var):
|
268 |
logger.error(f"Environment variable {var} is not set")
|
@@ -282,10 +284,13 @@ except Exception as e:
|
|
282 |
logger.error(f"Failed to initialize Groq model: {e}")
|
283 |
raise HTTPException(status_code=500, detail="Failed to initialize Groq model")
|
284 |
|
|
|
|
|
|
|
285 |
# Salesforce credentials
|
286 |
username = os.getenv("username")
|
287 |
password = os.getenv("password")
|
288 |
-
security_token = os.getenv("security_token")
|
289 |
domain = os.getenv("domain") # e.g., 'test' for sandbox
|
290 |
|
291 |
# Initialize Salesforce connection
|
@@ -303,27 +308,71 @@ chat_history = []
|
|
303 |
current_chat_history = []
|
304 |
MAX_HISTORY_SIZE = 100 # Limit chat history size
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
def handle_query(query):
|
307 |
# Prepare context from chat history
|
308 |
-
|
309 |
for past_query, response in reversed(current_chat_history[-10:]): # Limit context to last 10 exchanges
|
310 |
if past_query.strip():
|
311 |
-
|
312 |
|
313 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
prompt_template = ChatPromptTemplate.from_messages([
|
315 |
("system", """
|
316 |
You are the Clara Redfernstech chatbot. Provide accurate, professional answers in 10-15 words.
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
|
319 |
-
{
|
320 |
|
321 |
Question:
|
322 |
{query}
|
323 |
"""),
|
324 |
])
|
325 |
-
prompt = prompt_template.format(
|
326 |
|
|
|
327 |
try:
|
328 |
response = llm.invoke(prompt)
|
329 |
response_text = response.content.strip()
|
|
|
236 |
from simple_salesforce import Salesforce, SalesforceLogin
|
237 |
from langchain_groq import ChatGroq
|
238 |
from langchain_core.prompts import ChatPromptTemplate
|
239 |
+
from llama_index.core import StorageContext, VectorStoreIndex, SimpleDirectoryReader, Settings
|
240 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
241 |
|
242 |
# Configure logging
|
243 |
logging.basicConfig(level=logging.INFO)
|
|
|
264 |
templates = Jinja2Templates(directory="static")
|
265 |
|
266 |
# Validate environment variables
|
267 |
+
required_env_vars = ["CHATGROQ_API_KEY", "username", "password", "security_token", "domain", "HF_TOKEN"]
|
268 |
for var in required_env_vars:
|
269 |
if not os.getenv(var):
|
270 |
logger.error(f"Environment variable {var} is not set")
|
|
|
284 |
logger.error(f"Failed to initialize Groq model: {e}")
|
285 |
raise HTTPException(status_code=500, detail="Failed to initialize Groq model")
|
286 |
|
287 |
+
# Configure LlamaIndex settings
|
288 |
+
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
289 |
+
|
290 |
# Salesforce credentials
|
291 |
username = os.getenv("username")
|
292 |
password = os.getenv("password")
|
293 |
+
security_token = os.getenv("security_token zasi")
|
294 |
domain = os.getenv("domain") # e.g., 'test' for sandbox
|
295 |
|
296 |
# Initialize Salesforce connection
|
|
|
308 |
current_chat_history = []
|
309 |
MAX_HISTORY_SIZE = 100 # Limit chat history size
|
310 |
|
311 |
+
# Directories for data ingestion
|
312 |
+
PDF_DIRECTORY = "data"
|
313 |
+
PERSIST_DIR = "db"
|
314 |
+
|
315 |
+
# Ensure directories exist
|
316 |
+
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
317 |
+
os.makedirs(PERSIST_DIR, exist_ok=True)
|
318 |
+
|
319 |
+
def data_ingestion_from_directory():
|
320 |
+
try:
|
321 |
+
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
322 |
+
storage_context = StorageContext.from_defaults()
|
323 |
+
index = VectorStoreIndex.from_documents(documents)
|
324 |
+
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
325 |
+
logger.info("Data ingestion completed successfully")
|
326 |
+
except Exception as e:
|
327 |
+
logger.error(f"Error during data ingestion: {e}")
|
328 |
+
raise HTTPException(status_code=500, detail=f"Data ingestion failed: {str(e)}")
|
329 |
+
|
330 |
+
def initialize():
|
331 |
+
try:
|
332 |
+
data_ingestion_from_directory() # Process PDF ingestion at startup
|
333 |
+
except Exception as e:
|
334 |
+
logger.error(f"Initialization failed: {e}")
|
335 |
+
raise HTTPException(status_code=500, detail="Initialization failed")
|
336 |
+
|
337 |
+
initialize() # Run initialization tasks
|
338 |
+
|
339 |
def handle_query(query):
|
340 |
# Prepare context from chat history
|
341 |
+
chat_context = ""
|
342 |
for past_query, response in reversed(current_chat_history[-10:]): # Limit context to last 10 exchanges
|
343 |
if past_query.strip():
|
344 |
+
chat_context += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
345 |
|
346 |
+
# Load vector index and retrieve relevant documents
|
347 |
+
try:
|
348 |
+
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
349 |
+
index = load_index_from_storage(storage_context)
|
350 |
+
query_engine = index.as_query_engine(similarity_top_k=2) # Retrieve top 2 relevant chunks
|
351 |
+
retrieved = query_engine.query(query)
|
352 |
+
doc_context = retrieved.response if hasattr(retrieved, 'response') else "No relevant documents found."
|
353 |
+
except Exception as e:
|
354 |
+
logger.error(f"Error retrieving documents: {e}")
|
355 |
+
doc_context = "Failed to retrieve documents."
|
356 |
+
|
357 |
+
# Construct the prompt with both chat and document context
|
358 |
prompt_template = ChatPromptTemplate.from_messages([
|
359 |
("system", """
|
360 |
You are the Clara Redfernstech chatbot. Provide accurate, professional answers in 10-15 words.
|
361 |
+
Use the document context and chat history to inform your response.
|
362 |
+
|
363 |
+
Document Context:
|
364 |
+
{doc_context}
|
365 |
|
366 |
+
Chat History:
|
367 |
+
{chat_context}
|
368 |
|
369 |
Question:
|
370 |
{query}
|
371 |
"""),
|
372 |
])
|
373 |
+
prompt = prompt_template.format(doc_context=doc_context, chat_context=chat_context, query=query)
|
374 |
|
375 |
+
# Query Groq model
|
376 |
try:
|
377 |
response = llm.invoke(prompt)
|
378 |
response_text = response.content.strip()
|