LoRACaptioner / demo.py
Rishi Desai
init dump for demo
dc6215b
raw
history blame
15.8 kB
import gradio as gr
import os
import zipfile
from io import BytesIO
import PIL.Image
import time
import tempfile
from main import process_images, collect_images_by_category, write_captions # Import the CLI functions
from dotenv import load_dotenv
from pathlib import Path
# Load environment variables
load_dotenv()
# Maximum number of images
MAX_IMAGES = 30
def create_download_file(image_paths, captions):
"""Create a zip file with images and their captions"""
zip_io = BytesIO()
with zipfile.ZipFile(zip_io, 'w') as zip_file:
for i, (image_path, caption) in enumerate(zip(image_paths, captions)):
# Get original filename without extension
base_name = os.path.splitext(os.path.basename(image_path))[0]
img_name = f"{base_name}.png"
caption_name = f"{base_name}.txt"
# Add image to zip
with open(image_path, 'rb') as img_file:
zip_file.writestr(img_name, img_file.read())
# Add caption to zip
zip_file.writestr(caption_name, caption)
return zip_io.getvalue()
def process_uploaded_images(image_paths, batch_by_category=False):
"""Process uploaded images using the same code path as CLI"""
try:
print(f"Processing {len(image_paths)} images, batch_by_category={batch_by_category}")
# Create a temporary directory to store the images
with tempfile.TemporaryDirectory() as temp_dir:
# Copy images to temp directory and maintain original order
temp_image_paths = []
original_to_temp = {} # Map original paths to temp paths
for path in image_paths:
filename = os.path.basename(path)
temp_path = os.path.join(temp_dir, filename)
with open(path, 'rb') as src, open(temp_path, 'wb') as dst:
dst.write(src.read())
temp_image_paths.append(temp_path)
original_to_temp[path] = temp_path
print(f"Created {len(temp_image_paths)} temporary files")
# Convert temp_dir to Path object for collect_images_by_category
temp_dir_path = Path(temp_dir)
# Process images using the CLI code path
images_by_category, image_paths_by_category = collect_images_by_category(temp_dir_path)
print(f"Collected images into {len(images_by_category)} categories")
# Get all images and paths in the correct order
all_images = []
all_image_paths = []
for path in image_paths: # Use original order
temp_path = original_to_temp[path]
found = False
for category, paths in image_paths_by_category.items():
if temp_path in [str(p) for p in paths]: # Convert Path objects to strings for comparison
idx = [str(p) for p in paths].index(temp_path)
all_images.append(images_by_category[category][idx])
all_image_paths.append(path) # Use original path
found = True
break
if not found:
print(f"Warning: Could not find image {path} in categorized data")
print(f"Collected {len(all_images)} images in correct order")
# Process based on batch setting
if batch_by_category:
# Process each category separately
captions = [""] * len(image_paths) # Initialize with empty strings
for category, images in images_by_category.items():
category_paths = image_paths_by_category[category]
print(f"Processing category '{category}' with {len(images)} images")
# Use the same code path as CLI
from caption import caption_images
category_captions = caption_images(images, category=category, batch_mode=True)
print(f"Generated {len(category_captions)} captions for category '{category}'")
print("Category captions:", category_captions) # Debug print category captions
# Map captions back to original paths
for temp_path, caption in zip(category_paths, category_captions):
temp_path_str = str(temp_path)
for orig_path, orig_temp in original_to_temp.items():
if orig_temp == temp_path_str:
idx = image_paths.index(orig_path)
captions[idx] = caption
break
else:
# Process all images at once
from caption import caption_images
print(f"Processing all {len(all_images)} images at once")
all_captions = caption_images(all_images, batch_mode=False)
print(f"Generated {len(all_captions)} captions")
print("All captions:", all_captions) # Debug print all captions
captions = [""] * len(image_paths)
for path, caption in zip(all_image_paths, all_captions):
idx = image_paths.index(path)
captions[idx] = caption
print(f"Returning {len(captions)} captions")
print("Final captions:", captions) # Debug print final captions
return captions
except Exception as e:
print(f"Error in processing: {e}")
raise
# Main Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Image Autocaptioner")
# Store uploaded images
stored_image_paths = gr.State([])
batch_by_category = gr.State(True) # State to track if batch by category is enabled
# Upload component
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Upload your images")
image_upload = gr.File(
file_count="multiple",
label="Drop your files here",
file_types=["image"],
type="filepath"
)
with gr.Column(scale=1):
autocaption_btn = gr.Button("Autocaption Images", variant="primary", interactive=False)
status_text = gr.Markdown("Upload images to begin", visible=True)
# Advanced settings dropdown
with gr.Accordion("Advanced", open=False):
batch_category_checkbox = gr.Checkbox(
label="Batch by category",
value=True,
info="Group similar images together when processing"
)
# Create a container for the captioning area (initially hidden)
with gr.Column(visible=False) as captioning_area:
gr.Markdown("### Your images and captions")
# Create individual image and caption rows
image_rows = []
image_components = []
caption_components = []
for i in range(MAX_IMAGES):
with gr.Row(visible=False) as img_row:
image_rows.append(img_row)
img = gr.Image(
label=f"Image {i+1}",
type="filepath",
show_label=False,
height=200,
width=200,
scale=1
)
image_components.append(img)
caption = gr.Textbox(
label=f"Caption {i+1}",
lines=3,
scale=2
)
caption_components.append(caption)
# Add download button
download_btn = gr.Button("Download Images with Captions", variant="secondary", interactive=False)
download_output = gr.File(label="Download Zip", visible=False)
def load_captioning(files):
"""Process uploaded images and show them in the UI"""
if not files:
return [], gr.update(visible=False), gr.update(interactive=False), gr.update(interactive=False), gr.update(visible=False), gr.update(value="Upload images to begin"), *[gr.update(visible=False) for _ in range(MAX_IMAGES)]
# Filter to only keep image files
image_paths = [f for f in files if f.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp'))]
if not image_paths or len(image_paths) < 1:
gr.Warning(f"Please upload at least one image")
return [], gr.update(visible=False), gr.update(interactive=False), gr.update(interactive=False), gr.update(visible=False), gr.update(value="No valid images found"), *[gr.update(visible=False) for _ in range(MAX_IMAGES)]
if len(image_paths) > MAX_IMAGES:
gr.Warning(f"Only the first {MAX_IMAGES} images will be processed")
image_paths = image_paths[:MAX_IMAGES]
# Update row visibility
row_updates = []
for i in range(MAX_IMAGES):
if i < len(image_paths):
row_updates.append(gr.update(visible=True))
else:
row_updates.append(gr.update(visible=False))
return (
image_paths, # stored_image_paths
gr.update(visible=True), # captioning_area
gr.update(interactive=True), # autocaption_btn
gr.update(interactive=True), # download_btn
gr.update(visible=False), # download_output
gr.update(value=f"{len(image_paths)} images ready for captioning"), # status_text
*row_updates # image_rows
)
def update_images(image_paths):
"""Update the image components with the uploaded images"""
print(f"Updating images with paths: {image_paths}")
updates = []
for i in range(MAX_IMAGES):
if i < len(image_paths):
updates.append(gr.update(value=image_paths[i]))
else:
updates.append(gr.update(value=None))
return updates
def update_caption_labels(image_paths):
"""Update caption labels to include the image filename"""
updates = []
for i in range(MAX_IMAGES):
if i < len(image_paths):
filename = os.path.basename(image_paths[i])
updates.append(gr.update(label=filename))
else:
updates.append(gr.update(label=""))
return updates
def run_captioning(image_paths, batch_category):
"""Generate captions for the images using the CLI code path"""
if not image_paths:
return [gr.update(value="") for _ in range(MAX_IMAGES)] + [gr.update(value="No images to process")]
try:
print(f"Starting captioning for {len(image_paths)} images")
captions = process_uploaded_images(image_paths, batch_category)
print(f"Generated {len(captions)} captions")
print("Sample captions:", captions[:2]) # Debug print first two captions
gr.Info("Captioning complete!")
status = gr.update(value="✅ Captioning complete")
except Exception as e:
print(f"Error in captioning: {str(e)}")
gr.Error(f"Captioning failed: {str(e)}")
captions = [f"Error: {str(e)}" for _ in image_paths]
status = gr.update(value=f"❌ Error: {str(e)}")
# Update caption textboxes
caption_updates = []
for i in range(MAX_IMAGES):
if i < len(captions):
caption_updates.append(gr.update(value=captions[i]))
else:
caption_updates.append(gr.update(value=""))
print(f"Returning {len(caption_updates)} caption updates")
return caption_updates + [status]
def update_batch_setting(value):
"""Update the batch by category setting"""
return value
def create_zip_from_ui(image_paths, *captions_list):
"""Create a zip file from the current images and captions in the UI"""
# Filter out empty captions for non-existent images
valid_captions = [cap for i, cap in enumerate(captions_list) if i < len(image_paths) and cap]
valid_image_paths = image_paths[:len(valid_captions)]
if not valid_image_paths:
gr.Warning("No images to download")
return None
# Create zip file
zip_data = create_download_file(valid_image_paths, valid_captions)
timestamp = time.strftime("%Y%m%d_%H%M%S")
# Create a temporary file to store the zip
temp_dir = tempfile.gettempdir()
zip_filename = f"image_captions_{timestamp}.zip"
zip_path = os.path.join(temp_dir, zip_filename)
# Write the zip data to the temporary file
with open(zip_path, "wb") as f:
f.write(zip_data)
# Return the path to the temporary file
return zip_path
# Update the upload_outputs
upload_outputs = [
stored_image_paths,
captioning_area,
autocaption_btn,
download_btn,
download_output,
status_text,
*image_rows
]
# Update both paths and images in a single flow
def process_upload(files):
# First get paths and visibility updates
image_paths, captioning_update, autocaption_update, download_btn_update, download_output_update, status_update, *row_updates = load_captioning(files)
# Then get image updates
image_updates = update_images(image_paths)
# Update caption labels with filenames
caption_label_updates = update_caption_labels(image_paths)
# Return all updates together
return [image_paths, captioning_update, autocaption_update, download_btn_update, download_output_update, status_update] + row_updates + image_updates + caption_label_updates
# Combined outputs for both functions
combined_outputs = upload_outputs + image_components + caption_components
image_upload.change(
process_upload,
inputs=[image_upload],
outputs=combined_outputs
)
# Set up batch category checkbox
batch_category_checkbox.change(
update_batch_setting,
inputs=[batch_category_checkbox],
outputs=[batch_by_category]
)
# Manage the captioning status
def on_captioning_start():
return gr.update(value="⏳ Processing captions... please wait"), gr.update(interactive=False)
def on_captioning_complete():
return gr.update(value="✅ Captioning complete"), gr.update(interactive=True)
# Set up captioning button
autocaption_btn.click(
on_captioning_start,
inputs=None,
outputs=[status_text, autocaption_btn]
).success(
run_captioning,
inputs=[stored_image_paths, batch_by_category],
outputs=caption_components + [status_text]
).success(
on_captioning_complete,
inputs=None,
outputs=[status_text, autocaption_btn]
)
# Set up download button
download_btn.click(
create_zip_from_ui,
inputs=[stored_image_paths] + caption_components,
outputs=[download_output]
).then(
lambda: gr.update(visible=True),
inputs=None,
outputs=[download_output]
)
if __name__ == "__main__":
demo.launch(share=True)