File size: 15,754 Bytes
dc6215b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import gradio as gr
import os
import zipfile
from io import BytesIO
import PIL.Image
import time
import tempfile
from main import process_images, collect_images_by_category, write_captions  # Import the CLI functions
from dotenv import load_dotenv
from pathlib import Path

# Load environment variables
load_dotenv()

# Maximum number of images
MAX_IMAGES = 30

def create_download_file(image_paths, captions):
    """Create a zip file with images and their captions"""
    zip_io = BytesIO()
    with zipfile.ZipFile(zip_io, 'w') as zip_file:
        for i, (image_path, caption) in enumerate(zip(image_paths, captions)):
            # Get original filename without extension
            base_name = os.path.splitext(os.path.basename(image_path))[0]
            img_name = f"{base_name}.png"
            caption_name = f"{base_name}.txt"
            
            # Add image to zip
            with open(image_path, 'rb') as img_file:
                zip_file.writestr(img_name, img_file.read())
            
            # Add caption to zip
            zip_file.writestr(caption_name, caption)
    
    return zip_io.getvalue()

def process_uploaded_images(image_paths, batch_by_category=False):
    """Process uploaded images using the same code path as CLI"""
    try:
        print(f"Processing {len(image_paths)} images, batch_by_category={batch_by_category}")
        # Create a temporary directory to store the images
        with tempfile.TemporaryDirectory() as temp_dir:
            # Copy images to temp directory and maintain original order
            temp_image_paths = []
            original_to_temp = {}  # Map original paths to temp paths
            for path in image_paths:
                filename = os.path.basename(path)
                temp_path = os.path.join(temp_dir, filename)
                with open(path, 'rb') as src, open(temp_path, 'wb') as dst:
                    dst.write(src.read())
                temp_image_paths.append(temp_path)
                original_to_temp[path] = temp_path
            
            print(f"Created {len(temp_image_paths)} temporary files")
            
            # Convert temp_dir to Path object for collect_images_by_category
            temp_dir_path = Path(temp_dir)
            
            # Process images using the CLI code path
            images_by_category, image_paths_by_category = collect_images_by_category(temp_dir_path)
            print(f"Collected images into {len(images_by_category)} categories")
            
            # Get all images and paths in the correct order
            all_images = []
            all_image_paths = []
            for path in image_paths:  # Use original order
                temp_path = original_to_temp[path]
                found = False
                for category, paths in image_paths_by_category.items():
                    if temp_path in [str(p) for p in paths]:  # Convert Path objects to strings for comparison
                        idx = [str(p) for p in paths].index(temp_path)
                        all_images.append(images_by_category[category][idx])
                        all_image_paths.append(path)  # Use original path
                        found = True
                        break
                if not found:
                    print(f"Warning: Could not find image {path} in categorized data")
            
            print(f"Collected {len(all_images)} images in correct order")
            
            # Process based on batch setting
            if batch_by_category:
                # Process each category separately
                captions = [""] * len(image_paths)  # Initialize with empty strings
                for category, images in images_by_category.items():
                    category_paths = image_paths_by_category[category]
                    print(f"Processing category '{category}' with {len(images)} images")
                    # Use the same code path as CLI
                    from caption import caption_images
                    category_captions = caption_images(images, category=category, batch_mode=True)
                    print(f"Generated {len(category_captions)} captions for category '{category}'")
                    print("Category captions:", category_captions)  # Debug print category captions
                    
                    # Map captions back to original paths
                    for temp_path, caption in zip(category_paths, category_captions):
                        temp_path_str = str(temp_path)
                        for orig_path, orig_temp in original_to_temp.items():
                            if orig_temp == temp_path_str:
                                idx = image_paths.index(orig_path)
                                captions[idx] = caption
                                break
            else:
                # Process all images at once
                from caption import caption_images
                print(f"Processing all {len(all_images)} images at once")
                all_captions = caption_images(all_images, batch_mode=False)
                print(f"Generated {len(all_captions)} captions")
                print("All captions:", all_captions)  # Debug print all captions
                captions = [""] * len(image_paths)
                for path, caption in zip(all_image_paths, all_captions):
                    idx = image_paths.index(path)
                    captions[idx] = caption
            
            print(f"Returning {len(captions)} captions")
            print("Final captions:", captions)  # Debug print final captions
            return captions
            
    except Exception as e:
        print(f"Error in processing: {e}")
        raise

# Main Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Autocaptioner")
    
    # Store uploaded images
    stored_image_paths = gr.State([])
    batch_by_category = gr.State(True)  # State to track if batch by category is enabled
    
    # Upload component
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("### Upload your images")
            image_upload = gr.File(
                file_count="multiple", 
                label="Drop your files here", 
                file_types=["image"],
                type="filepath"
            )
        
        with gr.Column(scale=1):
            autocaption_btn = gr.Button("Autocaption Images", variant="primary", interactive=False)
            status_text = gr.Markdown("Upload images to begin", visible=True)
            
            # Advanced settings dropdown
            with gr.Accordion("Advanced", open=False):
                batch_category_checkbox = gr.Checkbox(
                    label="Batch by category", 
                    value=True,
                    info="Group similar images together when processing"
                )
    
    # Create a container for the captioning area (initially hidden)
    with gr.Column(visible=False) as captioning_area:
        gr.Markdown("### Your images and captions")
        
        # Create individual image and caption rows
        image_rows = []
        image_components = []
        caption_components = []
        
        for i in range(MAX_IMAGES):
            with gr.Row(visible=False) as img_row:
                image_rows.append(img_row)
                
                img = gr.Image(
                    label=f"Image {i+1}",
                    type="filepath",
                    show_label=False, 
                    height=200,
                    width=200,
                    scale=1
                )
                image_components.append(img)
                
                caption = gr.Textbox(
                    label=f"Caption {i+1}",
                    lines=3,
                    scale=2
                )
                caption_components.append(caption)
        
        # Add download button
        download_btn = gr.Button("Download Images with Captions", variant="secondary", interactive=False)
        download_output = gr.File(label="Download Zip", visible=False)

    def load_captioning(files):
        """Process uploaded images and show them in the UI"""
        if not files:
            return [], gr.update(visible=False), gr.update(interactive=False), gr.update(interactive=False), gr.update(visible=False), gr.update(value="Upload images to begin"), *[gr.update(visible=False) for _ in range(MAX_IMAGES)]
        
        # Filter to only keep image files
        image_paths = [f for f in files if f.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp'))]
        
        if not image_paths or len(image_paths) < 1:
            gr.Warning(f"Please upload at least one image")
            return [], gr.update(visible=False), gr.update(interactive=False), gr.update(interactive=False), gr.update(visible=False), gr.update(value="No valid images found"), *[gr.update(visible=False) for _ in range(MAX_IMAGES)]
        
        if len(image_paths) > MAX_IMAGES:
            gr.Warning(f"Only the first {MAX_IMAGES} images will be processed")
            image_paths = image_paths[:MAX_IMAGES]
        
        # Update row visibility
        row_updates = []
        for i in range(MAX_IMAGES):
            if i < len(image_paths):
                row_updates.append(gr.update(visible=True))
            else:
                row_updates.append(gr.update(visible=False))
        
        return (
            image_paths,  # stored_image_paths
            gr.update(visible=True),  # captioning_area
            gr.update(interactive=True),  # autocaption_btn
            gr.update(interactive=True),  # download_btn
            gr.update(visible=False),  # download_output
            gr.update(value=f"{len(image_paths)} images ready for captioning"),  # status_text
            *row_updates  # image_rows
        )
    
    def update_images(image_paths):
        """Update the image components with the uploaded images"""
        print(f"Updating images with paths: {image_paths}")
        updates = []
        for i in range(MAX_IMAGES):
            if i < len(image_paths):
                updates.append(gr.update(value=image_paths[i]))
            else:
                updates.append(gr.update(value=None))
        return updates
    
    def update_caption_labels(image_paths):
        """Update caption labels to include the image filename"""
        updates = []
        for i in range(MAX_IMAGES):
            if i < len(image_paths):
                filename = os.path.basename(image_paths[i])
                updates.append(gr.update(label=filename))
            else:
                updates.append(gr.update(label=""))
        return updates
    
    def run_captioning(image_paths, batch_category):
        """Generate captions for the images using the CLI code path"""
        if not image_paths:
            return [gr.update(value="") for _ in range(MAX_IMAGES)] + [gr.update(value="No images to process")]
                
        try:
            print(f"Starting captioning for {len(image_paths)} images")
            captions = process_uploaded_images(image_paths, batch_category)
            print(f"Generated {len(captions)} captions")
            print("Sample captions:", captions[:2])  # Debug print first two captions
            
            gr.Info("Captioning complete!")
            status = gr.update(value="✅ Captioning complete")
        except Exception as e:
            print(f"Error in captioning: {str(e)}")
            gr.Error(f"Captioning failed: {str(e)}")
            captions = [f"Error: {str(e)}" for _ in image_paths]
            status = gr.update(value=f"❌ Error: {str(e)}")
        
        # Update caption textboxes
        caption_updates = []
        for i in range(MAX_IMAGES):
            if i < len(captions):
                caption_updates.append(gr.update(value=captions[i]))
            else:
                caption_updates.append(gr.update(value=""))
        
        print(f"Returning {len(caption_updates)} caption updates")
        return caption_updates + [status]
    
    def update_batch_setting(value):
        """Update the batch by category setting"""
        return value
    
    def create_zip_from_ui(image_paths, *captions_list):
        """Create a zip file from the current images and captions in the UI"""
        # Filter out empty captions for non-existent images
        valid_captions = [cap for i, cap in enumerate(captions_list) if i < len(image_paths) and cap]
        valid_image_paths = image_paths[:len(valid_captions)]
        
        if not valid_image_paths:
            gr.Warning("No images to download")
            return None
        
        # Create zip file
        zip_data = create_download_file(valid_image_paths, valid_captions)
        timestamp = time.strftime("%Y%m%d_%H%M%S")
        
        # Create a temporary file to store the zip
        temp_dir = tempfile.gettempdir()
        zip_filename = f"image_captions_{timestamp}.zip"
        zip_path = os.path.join(temp_dir, zip_filename)
        
        # Write the zip data to the temporary file
        with open(zip_path, "wb") as f:
            f.write(zip_data)
        
        # Return the path to the temporary file
        return zip_path
    
    # Update the upload_outputs
    upload_outputs = [
        stored_image_paths,
        captioning_area,
        autocaption_btn,
        download_btn,
        download_output,
        status_text,
        *image_rows
    ]
    
    # Update both paths and images in a single flow
    def process_upload(files):
        # First get paths and visibility updates
        image_paths, captioning_update, autocaption_update, download_btn_update, download_output_update, status_update, *row_updates = load_captioning(files)
        
        # Then get image updates
        image_updates = update_images(image_paths)
        
        # Update caption labels with filenames
        caption_label_updates = update_caption_labels(image_paths)
        
        # Return all updates together
        return [image_paths, captioning_update, autocaption_update, download_btn_update, download_output_update, status_update] + row_updates + image_updates + caption_label_updates
    
    # Combined outputs for both functions
    combined_outputs = upload_outputs + image_components + caption_components
    
    image_upload.change(
        process_upload,
        inputs=[image_upload],
        outputs=combined_outputs
    )
    
    # Set up batch category checkbox
    batch_category_checkbox.change(
        update_batch_setting,
        inputs=[batch_category_checkbox],
        outputs=[batch_by_category]
    )
    
    # Manage the captioning status
    def on_captioning_start():
        return gr.update(value="⏳ Processing captions... please wait"), gr.update(interactive=False)
    
    def on_captioning_complete():
        return gr.update(value="✅ Captioning complete"), gr.update(interactive=True)
    
    # Set up captioning button
    autocaption_btn.click(
        on_captioning_start,
        inputs=None,
        outputs=[status_text, autocaption_btn]
    ).success(
        run_captioning,
        inputs=[stored_image_paths, batch_by_category],
        outputs=caption_components + [status_text]
    ).success(
        on_captioning_complete,
        inputs=None,
        outputs=[status_text, autocaption_btn]
    )
    
    # Set up download button
    download_btn.click(
        create_zip_from_ui,
        inputs=[stored_image_paths] + caption_components,
        outputs=[download_output]
    ).then(
        lambda: gr.update(visible=True),
        inputs=None,
        outputs=[download_output]
    )

if __name__ == "__main__":
    demo.launch(share=True)