|
|
|
|
|
import os |
|
import tempfile |
|
from typing import List |
|
|
|
import fitz |
|
import requests |
|
from transformers import pipeline |
|
from gtts import gTTS |
|
import streamlit as st |
|
|
|
|
|
def summarize_text(text: str) -> str: |
|
if not text.strip(): |
|
return "Summary not available (empty text)." |
|
|
|
try: |
|
|
|
if len(text) > 2000: |
|
text = text[:2000] |
|
|
|
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") |
|
result = summarizer(text, max_length=200, min_length=30, do_sample=False) |
|
|
|
if result and isinstance(result, list) and 'summary_text' in result[0]: |
|
return result[0]['summary_text'] |
|
return "Summary not available (model did not return text)." |
|
except Exception as e: |
|
return f"Summary failed: {str(e)}" |
|
|
|
def extract_text_from_pdf(pdf_path: str) -> str: |
|
doc = fitz.open(pdf_path) |
|
text = "" |
|
for page in doc: |
|
text += page.get_text() |
|
return text |
|
|
|
def classify_topic(text: str, topics: List[str]) -> str: |
|
if not text.strip(): |
|
return "Unknown (no text extracted)" |
|
if not topics: |
|
return "Unknown (no topics provided)" |
|
|
|
classifier = pipeline("zero-shot-classification", model="valhalla/distilbart-mnli-12-3") |
|
result = classifier(text[:1000], candidate_labels=topics) |
|
|
|
if 'labels' in result and isinstance(result['labels'], list) and len(result['labels']) > 0: |
|
return result['labels'][0] |
|
return "Unknown (classification failed)" |
|
|
|
def generate_audio(text: str, output_path: str): |
|
try: |
|
tts = gTTS(text) |
|
tts.save(output_path) |
|
except Exception as e: |
|
raise RuntimeError(f"Audio generation failed: {str(e)}") |
|
|
|
|
|
st.set_page_config(page_title="Research Paper Summarizer", layout="centered") |
|
st.title("π AI Research Paper Summarizer") |
|
|
|
st.markdown(""" |
|
Upload a research paper (PDF) and a list of topics. The app will: |
|
1. Extract and summarize the paper |
|
2. Classify it into a topic |
|
3. Generate an audio summary π§ |
|
""") |
|
|
|
with st.form("upload_form"): |
|
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) |
|
topic_input = st.text_input("Enter comma-separated topics") |
|
submitted = st.form_submit_button("Summarize and Generate Audio") |
|
|
|
if submitted and uploaded_file and topic_input: |
|
with st.spinner("Processing paper..."): |
|
try: |
|
temp_dir = tempfile.mkdtemp() |
|
file_path = os.path.join(temp_dir, uploaded_file.name) |
|
|
|
with open(file_path, "wb") as f: |
|
f.write(uploaded_file.read()) |
|
|
|
text = extract_text_from_pdf(file_path) |
|
st.info(f"Extracted text length: {len(text)} characters") |
|
|
|
if not text.strip(): |
|
st.error("β No text could be extracted from the PDF. Try another file.") |
|
else: |
|
topic_list = [t.strip() for t in topic_input.split(",") if t.strip()] |
|
classified_topic = classify_topic(text, topic_list) |
|
summary = summarize_text(text) |
|
|
|
st.markdown(f"### π§ Classified Topic: `{classified_topic}`") |
|
st.markdown("### βοΈ Summary:") |
|
st.write(summary) |
|
|
|
audio_path = os.path.join(temp_dir, "summary.mp3") |
|
generate_audio(summary, audio_path) |
|
|
|
st.markdown("### π Audio Summary") |
|
st.audio(audio_path) |
|
st.success("Done! Audio summary is ready.") |
|
|
|
except Exception as e: |
|
st.error(f"β Error: {str(e)}") |
|
|