# app.py (Streamlit-only version for Hugging Face Spaces with error handling) import os import tempfile from typing import List import fitz # PyMuPDF import requests from transformers import pipeline from gtts import gTTS import streamlit as st # ---------- CONFIG ---------- def summarize_text(text: str) -> str: if not text.strip(): return "Summary not available (empty text)." try: # Truncate long text safely if len(text) > 2000: text = text[:2000] summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") result = summarizer(text, max_length=200, min_length=30, do_sample=False) if result and isinstance(result, list) and 'summary_text' in result[0]: return result[0]['summary_text'] return "Summary not available (model did not return text)." except Exception as e: return f"Summary failed: {str(e)}" def extract_text_from_pdf(pdf_path: str) -> str: doc = fitz.open(pdf_path) text = "" for page in doc: text += page.get_text() return text def classify_topic(text: str, topics: List[str]) -> str: if not text.strip(): return "Unknown (no text extracted)" if not topics: return "Unknown (no topics provided)" classifier = pipeline("zero-shot-classification", model="valhalla/distilbart-mnli-12-3") result = classifier(text[:1000], candidate_labels=topics) if 'labels' in result and isinstance(result['labels'], list) and len(result['labels']) > 0: return result['labels'][0] return "Unknown (classification failed)" def generate_audio(text: str, output_path: str): try: tts = gTTS(text) tts.save(output_path) except Exception as e: raise RuntimeError(f"Audio generation failed: {str(e)}") # ---------- STREAMLIT UI ---------- st.set_page_config(page_title="Research Paper Summarizer", layout="centered") st.title("📄 AI Research Paper Summarizer") st.markdown(""" Upload a research paper (PDF) and a list of topics. The app will: 1. Extract and summarize the paper 2. Classify it into a topic 3. Generate an audio summary 🎧 """) with st.form("upload_form"): uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) topic_input = st.text_input("Enter comma-separated topics") submitted = st.form_submit_button("Summarize and Generate Audio") if submitted and uploaded_file and topic_input: with st.spinner("Processing paper..."): try: temp_dir = tempfile.mkdtemp() file_path = os.path.join(temp_dir, uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.read()) text = extract_text_from_pdf(file_path) st.info(f"Extracted text length: {len(text)} characters") if not text.strip(): st.error("❌ No text could be extracted from the PDF. Try another file.") else: topic_list = [t.strip() for t in topic_input.split(",") if t.strip()] classified_topic = classify_topic(text, topic_list) summary = summarize_text(text) st.markdown(f"### 🧠 Classified Topic: `{classified_topic}`") st.markdown("### ✍️ Summary:") st.write(summary) audio_path = os.path.join(temp_dir, "summary.mp3") generate_audio(summary, audio_path) st.markdown("### 🔊 Audio Summary") st.audio(audio_path) st.success("Done! Audio summary is ready.") except Exception as e: st.error(f"❌ Error: {str(e)}")