Spaces:
Paused
Paused
# WIP, coming soon ish | |
from functools import partial | |
import torch | |
import yaml | |
from toolkit.accelerator import unwrap_model | |
from toolkit.basic import flush | |
from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
from toolkit.prompt_utils import PromptEmbeds | |
from transformers import AutoTokenizer, UMT5EncoderModel | |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, WanTransformer3DModel | |
import os | |
import sys | |
import weakref | |
import torch | |
import yaml | |
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
from toolkit.prompt_utils import PromptEmbeds | |
import os | |
import copy | |
from toolkit.config_modules import ModelConfig, GenerateImageConfig | |
import torch | |
from diffusers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler | |
from transformers import CLIPVisionModel, CLIPImageProcessor | |
import torch.nn.functional as F | |
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput | |
from diffusers.pipelines.wan.pipeline_wan import XLA_AVAILABLE | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from typing import Any, Callable, Dict, List, Optional, Union | |
from diffusers.video_processor import VideoProcessor | |
from diffusers.image_processor import PipelineImageInput | |
from PIL import Image | |
from .wan21 import \ | |
scheduler_configUniPC, \ | |
scheduler_config, \ | |
Wan21 | |
from .wan_utils import add_first_frame_conditioning | |
class AggressiveWanI2VUnloadPipeline(WanImageToVideoPipeline): | |
def __init__( | |
self, | |
tokenizer: AutoTokenizer, | |
text_encoder: UMT5EncoderModel, | |
image_encoder: CLIPVisionModel, | |
image_processor: CLIPImageProcessor, | |
transformer: WanTransformer3DModel, | |
vae: AutoencoderKLWan, | |
scheduler: FlowMatchEulerDiscreteScheduler, | |
device: torch.device = torch.device("cuda"), | |
): | |
super().__init__( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
image_encoder=image_encoder, | |
transformer=transformer, | |
scheduler=scheduler, | |
image_processor=image_processor, | |
) | |
self._exec_device = device | |
def _execution_device(self): | |
return self._exec_device | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: Union[str, List[str]] = None, | |
height: int = 480, | |
width: int = 832, | |
num_frames: int = 81, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 5.0, | |
num_videos_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
): | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
# unload vae and transformer | |
device = self.transformer.device | |
self.text_encoder.to(device) | |
self.vae.to('cpu') | |
self.image_encoder.to('cpu') | |
flush() | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
negative_prompt, | |
image, | |
height, | |
width, | |
prompt_embeds, | |
negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._attention_kwargs = attention_kwargs | |
self._current_timestep = None | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
# unload text encoder | |
print("Unloading text encoder") | |
self.text_encoder.to("cpu") | |
self.transformer.to(device) | |
flush() | |
# Encode image embedding | |
transformer_dtype = self.transformer.dtype | |
prompt_embeds = prompt_embeds.to(transformer_dtype) | |
if negative_prompt_embeds is not None: | |
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype) | |
self.image_encoder.to(device) | |
self.vae.to(device) | |
image_embeds = self.encode_image(image) | |
image_embeds = image_embeds.repeat(batch_size, 1, 1) | |
image_embeds = image_embeds.to(transformer_dtype) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.vae.config.z_dim | |
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32) | |
latents, condition = self.prepare_latents( | |
image, | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
num_frames, | |
torch.bfloat16, | |
device, | |
generator, | |
latents, | |
) | |
self.image_encoder.to('cpu') | |
self.vae.to('cpu') | |
flush() | |
# 6. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
self._current_timestep = t | |
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype) | |
timestep = t.expand(latents.shape[0]) | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
encoder_hidden_states_image=image_embeds, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
)[0] | |
if self.do_classifier_free_guidance: | |
noise_uncond = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=negative_prompt_embeds, | |
encoder_hidden_states_image=image_embeds, # todo I think unconditional should be scaled down version | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
)[0] | |
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
self._current_timestep = None | |
self.vae.to(device) | |
if not output_type == "latent": | |
latents = latents.to(self.vae.dtype) | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean) | |
.view(1, self.vae.config.z_dim, 1, 1, 1) | |
.to(latents.device, latents.dtype) | |
) | |
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( | |
latents.device, latents.dtype | |
) | |
latents = latents / latents_std + latents_mean | |
video = self.vae.decode(latents, return_dict=False)[0] | |
video = self.video_processor.postprocess_video(video, output_type=output_type) | |
else: | |
video = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return WanPipelineOutput(frames=video) | |
def encode_image(self, image: PipelineImageInput): | |
image = self.image_processor(images=image, return_tensors="pt") | |
image = {k: v.to(self.image_encoder.device, dtype=self.image_encoder.dtype) for k, v in image.items()} | |
image_embeds = self.image_encoder(**image, output_hidden_states=True) | |
return image_embeds.hidden_states[-2] | |
class Wan21I2V(Wan21): | |
arch = 'wan21_i2v' | |
def __init__( | |
self, | |
device, | |
model_config: ModelConfig, | |
dtype='bf16', | |
custom_pipeline=None, | |
noise_scheduler=None, | |
**kwargs | |
): | |
super().__init__( | |
device, model_config, dtype, | |
custom_pipeline, noise_scheduler, **kwargs | |
) | |
self.is_flow_matching = True | |
self.is_transformer = True | |
self.target_lora_modules = ['WanTransformer3DModel'] | |
self.image_encoder: CLIPVisionModel = None | |
self.image_processor: CLIPImageProcessor = None | |
def load_model(self): | |
# call the super class to load most of the model | |
super().load_model() | |
if self.model_config.low_vram: | |
# unload text encoder | |
self.text_encoder.to("cpu") | |
# all the base stuff is loaded. We now need to load the vision encoder stuff | |
dtype = self.torch_dtype | |
try: | |
self.image_processor = CLIPImageProcessor.from_pretrained( | |
self.model_config.extras_name_or_path , | |
subfolder="image_processor" | |
) | |
self.image_encoder = CLIPVisionModel.from_pretrained( | |
self.model_config.extras_name_or_path, | |
subfolder="image_encoder", | |
torch_dtype=dtype, | |
) | |
except Exception as e: | |
# load from name_or_path | |
self.image_processor = CLIPImageProcessor.from_pretrained( | |
self.model_config.name_or_path_original, | |
subfolder="image_processor" | |
) | |
self.image_encoder = CLIPVisionModel.from_pretrained( | |
self.model_config.name_or_path_original, | |
subfolder="image_encoder", | |
torch_dtype=dtype, | |
) | |
self.image_encoder.to(self.device_torch, dtype=dtype) | |
self.image_encoder.eval() | |
self.image_encoder.requires_grad_(False) | |
if self.model_config.low_vram: | |
# unload image encoder | |
self.image_encoder.to("cpu") | |
# rebuild the pipeline | |
self.pipeline = self.get_generation_pipeline() | |
flush() | |
def generate_images( | |
self, | |
image_configs, | |
sampler=None, | |
pipeline=None, | |
): | |
# will oom on 24gb vram if we dont unload vision encoder first | |
if self.model_config.low_vram: | |
# unload image encoder | |
self.image_encoder.to("cpu") | |
self.vae.to("cpu") | |
self.transformer.to("cpu") | |
flush() | |
super().generate_images( | |
image_configs, | |
sampler=sampler, | |
pipeline=pipeline, | |
) | |
def set_device_state_preset(self, *args, **kwargs): | |
# set the device state to cpu for the image encoder | |
if self.model_config.low_vram: | |
return | |
super().set_device_state_preset(*args, **kwargs) | |
def get_generation_pipeline(self): | |
scheduler = UniPCMultistepScheduler(**scheduler_configUniPC) | |
if self.model_config.low_vram: | |
pipeline = AggressiveWanI2VUnloadPipeline( | |
vae=self.vae, | |
transformer=self.model, | |
text_encoder=self.text_encoder, | |
tokenizer=self.tokenizer, | |
scheduler=scheduler, | |
image_encoder=self.image_encoder, | |
image_processor=self.image_processor, | |
device=self.device_torch | |
) | |
else: | |
pipeline = WanImageToVideoPipeline( | |
vae=self.vae, | |
transformer=self.unet, | |
text_encoder=self.text_encoder, | |
tokenizer=self.tokenizer, | |
scheduler=scheduler, | |
image_encoder=self.image_encoder, | |
image_processor=self.image_processor, | |
) | |
# pipeline = pipeline.to(self.device_torch) | |
return pipeline | |
def generate_single_image( | |
self, | |
pipeline: WanImageToVideoPipeline, | |
gen_config: GenerateImageConfig, | |
conditional_embeds: PromptEmbeds, | |
unconditional_embeds: PromptEmbeds, | |
generator: torch.Generator, | |
extra: dict, | |
): | |
# reactivate progress bar since this is slooooow | |
pipeline.set_progress_bar_config(disable=False) | |
# pipeline = pipeline.to(self.device_torch) | |
if gen_config.ctrl_img is None: | |
raise ValueError("I2V samples must have a control image") | |
control_img = Image.open(gen_config.ctrl_img).convert("RGB") | |
height = gen_config.height | |
width = gen_config.width | |
# make sure they are divisible by 16 | |
height = height // 16 * 16 | |
width = width // 16 * 16 | |
# resize the control image | |
control_img = control_img.resize((width, height), Image.LANCZOS) | |
output = pipeline( | |
image=control_img, | |
prompt_embeds=conditional_embeds.text_embeds.to( | |
self.device_torch, dtype=self.torch_dtype), | |
negative_prompt_embeds=unconditional_embeds.text_embeds.to( | |
self.device_torch, dtype=self.torch_dtype), | |
height=height, | |
width=width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
num_frames=gen_config.num_frames, | |
generator=generator, | |
return_dict=False, | |
output_type="pil", | |
**extra | |
)[0] | |
# shape = [1, frames, channels, height, width] | |
batch_item = output[0] # list of pil images | |
if gen_config.num_frames > 1: | |
return batch_item # return the frames. | |
else: | |
# get just the first image | |
img = batch_item[0] | |
return img | |
def preprocess_clip_image(self, image_n1p1): | |
# tensor shape: (bs, ch, height, width) with values in range [-1, 1] | |
# Convert from [-1, 1] to [0, 1] range | |
tensor = (image_n1p1 + 1) / 2 | |
# Resize to 224x224 (using bilinear interpolation, which is resample=3 in PIL) | |
if tensor.shape[2] != 224 or tensor.shape[3] != 224: | |
tensor = F.interpolate(tensor, size=(224, 224), mode='bilinear', align_corners=False) | |
# Normalize with mean and std | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(tensor.device) | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(tensor.device) | |
tensor = (tensor - mean) / std | |
return tensor | |
def get_noise_prediction( | |
self, | |
latent_model_input: torch.Tensor, | |
timestep: torch.Tensor, # 0 to 1000 scale | |
text_embeddings: PromptEmbeds, | |
batch: DataLoaderBatchDTO, | |
**kwargs | |
): | |
# videos come in (bs, num_frames, channels, height, width) | |
# images come in (bs, channels, height, width) | |
with torch.no_grad(): | |
frames = batch.tensor | |
if len(frames.shape) == 4: | |
first_frames = frames | |
elif len(frames.shape) == 5: | |
first_frames = frames[:, 0] | |
else: | |
raise ValueError(f"Unknown frame shape {frames.shape}") | |
# first_frames shape is (bs, channels, height, width), -1 to 1 | |
preprocessed_frames = self.preprocess_clip_image(first_frames) | |
preprocessed_frames = preprocessed_frames.to(self.device_torch, dtype=self.torch_dtype) | |
# preprocessed_frame shape is (bs, 3, 224, 224) | |
self.image_encoder.to(self.device_torch) | |
image_embeds_full = self.image_encoder(preprocessed_frames, output_hidden_states=True) | |
image_embeds = image_embeds_full.hidden_states[-2] | |
image_embeds = image_embeds.to(self.device_torch, dtype=self.torch_dtype) | |
# Add conditioning using the standalone function | |
conditioned_latent = add_first_frame_conditioning( | |
latent_model_input=latent_model_input, | |
first_frame=first_frames, | |
vae=self.vae | |
) | |
noise_pred = self.model( | |
hidden_states=conditioned_latent, | |
timestep=timestep, | |
encoder_hidden_states=text_embeddings.text_embeds, | |
encoder_hidden_states_image=image_embeds, | |
return_dict=False, | |
**kwargs | |
)[0] | |
return noise_pred |