ramimu's picture
Upload 586 files
1c72248 verified
# WIP, coming soon ish
from functools import partial
import torch
import yaml
from toolkit.accelerator import unwrap_model
from toolkit.basic import flush
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from toolkit.prompt_utils import PromptEmbeds
from transformers import AutoTokenizer, UMT5EncoderModel
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, WanTransformer3DModel
import os
import sys
import weakref
import torch
import yaml
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from toolkit.prompt_utils import PromptEmbeds
import os
import copy
from toolkit.config_modules import ModelConfig, GenerateImageConfig
import torch
from diffusers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler
from transformers import CLIPVisionModel, CLIPImageProcessor
import torch.nn.functional as F
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
from diffusers.pipelines.wan.pipeline_wan import XLA_AVAILABLE
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.video_processor import VideoProcessor
from diffusers.image_processor import PipelineImageInput
from PIL import Image
from .wan21 import \
scheduler_configUniPC, \
scheduler_config, \
Wan21
from .wan_utils import add_first_frame_conditioning
class AggressiveWanI2VUnloadPipeline(WanImageToVideoPipeline):
def __init__(
self,
tokenizer: AutoTokenizer,
text_encoder: UMT5EncoderModel,
image_encoder: CLIPVisionModel,
image_processor: CLIPImageProcessor,
transformer: WanTransformer3DModel,
vae: AutoencoderKLWan,
scheduler: FlowMatchEulerDiscreteScheduler,
device: torch.device = torch.device("cuda"),
):
super().__init__(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
image_encoder=image_encoder,
transformer=transformer,
scheduler=scheduler,
image_processor=image_processor,
)
self._exec_device = device
@property
def _execution_device(self):
return self._exec_device
@torch.no_grad()
def __call__(
self,
image: PipelineImageInput,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# unload vae and transformer
device = self.transformer.device
self.text_encoder.to(device)
self.vae.to('cpu')
self.image_encoder.to('cpu')
flush()
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
negative_prompt,
image,
height,
width,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
)
# unload text encoder
print("Unloading text encoder")
self.text_encoder.to("cpu")
self.transformer.to(device)
flush()
# Encode image embedding
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
self.image_encoder.to(device)
self.vae.to(device)
image_embeds = self.encode_image(image)
image_embeds = image_embeds.repeat(batch_size, 1, 1)
image_embeds = image_embeds.to(transformer_dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.vae.config.z_dim
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32)
latents, condition = self.prepare_latents(
image,
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_frames,
torch.bfloat16,
device,
generator,
latents,
)
self.image_encoder.to('cpu')
self.vae.to('cpu')
flush()
# 6. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
timestep = t.expand(latents.shape[0])
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_hidden_states_image=image_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_uncond = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
encoder_hidden_states_image=image_embeds, # todo I think unconditional should be scaled down version
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
self.vae.to(device)
if not output_type == "latent":
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return WanPipelineOutput(frames=video)
def encode_image(self, image: PipelineImageInput):
image = self.image_processor(images=image, return_tensors="pt")
image = {k: v.to(self.image_encoder.device, dtype=self.image_encoder.dtype) for k, v in image.items()}
image_embeds = self.image_encoder(**image, output_hidden_states=True)
return image_embeds.hidden_states[-2]
class Wan21I2V(Wan21):
arch = 'wan21_i2v'
def __init__(
self,
device,
model_config: ModelConfig,
dtype='bf16',
custom_pipeline=None,
noise_scheduler=None,
**kwargs
):
super().__init__(
device, model_config, dtype,
custom_pipeline, noise_scheduler, **kwargs
)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ['WanTransformer3DModel']
self.image_encoder: CLIPVisionModel = None
self.image_processor: CLIPImageProcessor = None
def load_model(self):
# call the super class to load most of the model
super().load_model()
if self.model_config.low_vram:
# unload text encoder
self.text_encoder.to("cpu")
# all the base stuff is loaded. We now need to load the vision encoder stuff
dtype = self.torch_dtype
try:
self.image_processor = CLIPImageProcessor.from_pretrained(
self.model_config.extras_name_or_path ,
subfolder="image_processor"
)
self.image_encoder = CLIPVisionModel.from_pretrained(
self.model_config.extras_name_or_path,
subfolder="image_encoder",
torch_dtype=dtype,
)
except Exception as e:
# load from name_or_path
self.image_processor = CLIPImageProcessor.from_pretrained(
self.model_config.name_or_path_original,
subfolder="image_processor"
)
self.image_encoder = CLIPVisionModel.from_pretrained(
self.model_config.name_or_path_original,
subfolder="image_encoder",
torch_dtype=dtype,
)
self.image_encoder.to(self.device_torch, dtype=dtype)
self.image_encoder.eval()
self.image_encoder.requires_grad_(False)
if self.model_config.low_vram:
# unload image encoder
self.image_encoder.to("cpu")
# rebuild the pipeline
self.pipeline = self.get_generation_pipeline()
flush()
def generate_images(
self,
image_configs,
sampler=None,
pipeline=None,
):
# will oom on 24gb vram if we dont unload vision encoder first
if self.model_config.low_vram:
# unload image encoder
self.image_encoder.to("cpu")
self.vae.to("cpu")
self.transformer.to("cpu")
flush()
super().generate_images(
image_configs,
sampler=sampler,
pipeline=pipeline,
)
def set_device_state_preset(self, *args, **kwargs):
# set the device state to cpu for the image encoder
if self.model_config.low_vram:
return
super().set_device_state_preset(*args, **kwargs)
def get_generation_pipeline(self):
scheduler = UniPCMultistepScheduler(**scheduler_configUniPC)
if self.model_config.low_vram:
pipeline = AggressiveWanI2VUnloadPipeline(
vae=self.vae,
transformer=self.model,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
scheduler=scheduler,
image_encoder=self.image_encoder,
image_processor=self.image_processor,
device=self.device_torch
)
else:
pipeline = WanImageToVideoPipeline(
vae=self.vae,
transformer=self.unet,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
scheduler=scheduler,
image_encoder=self.image_encoder,
image_processor=self.image_processor,
)
# pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: WanImageToVideoPipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
# reactivate progress bar since this is slooooow
pipeline.set_progress_bar_config(disable=False)
# pipeline = pipeline.to(self.device_torch)
if gen_config.ctrl_img is None:
raise ValueError("I2V samples must have a control image")
control_img = Image.open(gen_config.ctrl_img).convert("RGB")
height = gen_config.height
width = gen_config.width
# make sure they are divisible by 16
height = height // 16 * 16
width = width // 16 * 16
# resize the control image
control_img = control_img.resize((width, height), Image.LANCZOS)
output = pipeline(
image=control_img,
prompt_embeds=conditional_embeds.text_embeds.to(
self.device_torch, dtype=self.torch_dtype),
negative_prompt_embeds=unconditional_embeds.text_embeds.to(
self.device_torch, dtype=self.torch_dtype),
height=height,
width=width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
num_frames=gen_config.num_frames,
generator=generator,
return_dict=False,
output_type="pil",
**extra
)[0]
# shape = [1, frames, channels, height, width]
batch_item = output[0] # list of pil images
if gen_config.num_frames > 1:
return batch_item # return the frames.
else:
# get just the first image
img = batch_item[0]
return img
def preprocess_clip_image(self, image_n1p1):
# tensor shape: (bs, ch, height, width) with values in range [-1, 1]
# Convert from [-1, 1] to [0, 1] range
tensor = (image_n1p1 + 1) / 2
# Resize to 224x224 (using bilinear interpolation, which is resample=3 in PIL)
if tensor.shape[2] != 224 or tensor.shape[3] != 224:
tensor = F.interpolate(tensor, size=(224, 224), mode='bilinear', align_corners=False)
# Normalize with mean and std
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(tensor.device)
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(tensor.device)
tensor = (tensor - mean) / std
return tensor
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
batch: DataLoaderBatchDTO,
**kwargs
):
# videos come in (bs, num_frames, channels, height, width)
# images come in (bs, channels, height, width)
with torch.no_grad():
frames = batch.tensor
if len(frames.shape) == 4:
first_frames = frames
elif len(frames.shape) == 5:
first_frames = frames[:, 0]
else:
raise ValueError(f"Unknown frame shape {frames.shape}")
# first_frames shape is (bs, channels, height, width), -1 to 1
preprocessed_frames = self.preprocess_clip_image(first_frames)
preprocessed_frames = preprocessed_frames.to(self.device_torch, dtype=self.torch_dtype)
# preprocessed_frame shape is (bs, 3, 224, 224)
self.image_encoder.to(self.device_torch)
image_embeds_full = self.image_encoder(preprocessed_frames, output_hidden_states=True)
image_embeds = image_embeds_full.hidden_states[-2]
image_embeds = image_embeds.to(self.device_torch, dtype=self.torch_dtype)
# Add conditioning using the standalone function
conditioned_latent = add_first_frame_conditioning(
latent_model_input=latent_model_input,
first_frame=first_frames,
vae=self.vae
)
noise_pred = self.model(
hidden_states=conditioned_latent,
timestep=timestep,
encoder_hidden_states=text_embeddings.text_embeds,
encoder_hidden_states_image=image_embeds,
return_dict=False,
**kwargs
)[0]
return noise_pred