Spaces:
Paused
Paused
File size: 19,083 Bytes
1c72248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
# WIP, coming soon ish
from functools import partial
import torch
import yaml
from toolkit.accelerator import unwrap_model
from toolkit.basic import flush
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from toolkit.prompt_utils import PromptEmbeds
from transformers import AutoTokenizer, UMT5EncoderModel
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, WanTransformer3DModel
import os
import sys
import weakref
import torch
import yaml
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from toolkit.prompt_utils import PromptEmbeds
import os
import copy
from toolkit.config_modules import ModelConfig, GenerateImageConfig
import torch
from diffusers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler
from transformers import CLIPVisionModel, CLIPImageProcessor
import torch.nn.functional as F
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
from diffusers.pipelines.wan.pipeline_wan import XLA_AVAILABLE
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.video_processor import VideoProcessor
from diffusers.image_processor import PipelineImageInput
from PIL import Image
from .wan21 import \
scheduler_configUniPC, \
scheduler_config, \
Wan21
from .wan_utils import add_first_frame_conditioning
class AggressiveWanI2VUnloadPipeline(WanImageToVideoPipeline):
def __init__(
self,
tokenizer: AutoTokenizer,
text_encoder: UMT5EncoderModel,
image_encoder: CLIPVisionModel,
image_processor: CLIPImageProcessor,
transformer: WanTransformer3DModel,
vae: AutoencoderKLWan,
scheduler: FlowMatchEulerDiscreteScheduler,
device: torch.device = torch.device("cuda"),
):
super().__init__(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
image_encoder=image_encoder,
transformer=transformer,
scheduler=scheduler,
image_processor=image_processor,
)
self._exec_device = device
@property
def _execution_device(self):
return self._exec_device
@torch.no_grad()
def __call__(
self,
image: PipelineImageInput,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# unload vae and transformer
device = self.transformer.device
self.text_encoder.to(device)
self.vae.to('cpu')
self.image_encoder.to('cpu')
flush()
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
negative_prompt,
image,
height,
width,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
)
# unload text encoder
print("Unloading text encoder")
self.text_encoder.to("cpu")
self.transformer.to(device)
flush()
# Encode image embedding
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
self.image_encoder.to(device)
self.vae.to(device)
image_embeds = self.encode_image(image)
image_embeds = image_embeds.repeat(batch_size, 1, 1)
image_embeds = image_embeds.to(transformer_dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.vae.config.z_dim
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32)
latents, condition = self.prepare_latents(
image,
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_frames,
torch.bfloat16,
device,
generator,
latents,
)
self.image_encoder.to('cpu')
self.vae.to('cpu')
flush()
# 6. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
timestep = t.expand(latents.shape[0])
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_hidden_states_image=image_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_uncond = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
encoder_hidden_states_image=image_embeds, # todo I think unconditional should be scaled down version
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
self.vae.to(device)
if not output_type == "latent":
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return WanPipelineOutput(frames=video)
def encode_image(self, image: PipelineImageInput):
image = self.image_processor(images=image, return_tensors="pt")
image = {k: v.to(self.image_encoder.device, dtype=self.image_encoder.dtype) for k, v in image.items()}
image_embeds = self.image_encoder(**image, output_hidden_states=True)
return image_embeds.hidden_states[-2]
class Wan21I2V(Wan21):
arch = 'wan21_i2v'
def __init__(
self,
device,
model_config: ModelConfig,
dtype='bf16',
custom_pipeline=None,
noise_scheduler=None,
**kwargs
):
super().__init__(
device, model_config, dtype,
custom_pipeline, noise_scheduler, **kwargs
)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ['WanTransformer3DModel']
self.image_encoder: CLIPVisionModel = None
self.image_processor: CLIPImageProcessor = None
def load_model(self):
# call the super class to load most of the model
super().load_model()
if self.model_config.low_vram:
# unload text encoder
self.text_encoder.to("cpu")
# all the base stuff is loaded. We now need to load the vision encoder stuff
dtype = self.torch_dtype
try:
self.image_processor = CLIPImageProcessor.from_pretrained(
self.model_config.extras_name_or_path ,
subfolder="image_processor"
)
self.image_encoder = CLIPVisionModel.from_pretrained(
self.model_config.extras_name_or_path,
subfolder="image_encoder",
torch_dtype=dtype,
)
except Exception as e:
# load from name_or_path
self.image_processor = CLIPImageProcessor.from_pretrained(
self.model_config.name_or_path_original,
subfolder="image_processor"
)
self.image_encoder = CLIPVisionModel.from_pretrained(
self.model_config.name_or_path_original,
subfolder="image_encoder",
torch_dtype=dtype,
)
self.image_encoder.to(self.device_torch, dtype=dtype)
self.image_encoder.eval()
self.image_encoder.requires_grad_(False)
if self.model_config.low_vram:
# unload image encoder
self.image_encoder.to("cpu")
# rebuild the pipeline
self.pipeline = self.get_generation_pipeline()
flush()
def generate_images(
self,
image_configs,
sampler=None,
pipeline=None,
):
# will oom on 24gb vram if we dont unload vision encoder first
if self.model_config.low_vram:
# unload image encoder
self.image_encoder.to("cpu")
self.vae.to("cpu")
self.transformer.to("cpu")
flush()
super().generate_images(
image_configs,
sampler=sampler,
pipeline=pipeline,
)
def set_device_state_preset(self, *args, **kwargs):
# set the device state to cpu for the image encoder
if self.model_config.low_vram:
return
super().set_device_state_preset(*args, **kwargs)
def get_generation_pipeline(self):
scheduler = UniPCMultistepScheduler(**scheduler_configUniPC)
if self.model_config.low_vram:
pipeline = AggressiveWanI2VUnloadPipeline(
vae=self.vae,
transformer=self.model,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
scheduler=scheduler,
image_encoder=self.image_encoder,
image_processor=self.image_processor,
device=self.device_torch
)
else:
pipeline = WanImageToVideoPipeline(
vae=self.vae,
transformer=self.unet,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
scheduler=scheduler,
image_encoder=self.image_encoder,
image_processor=self.image_processor,
)
# pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: WanImageToVideoPipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
# reactivate progress bar since this is slooooow
pipeline.set_progress_bar_config(disable=False)
# pipeline = pipeline.to(self.device_torch)
if gen_config.ctrl_img is None:
raise ValueError("I2V samples must have a control image")
control_img = Image.open(gen_config.ctrl_img).convert("RGB")
height = gen_config.height
width = gen_config.width
# make sure they are divisible by 16
height = height // 16 * 16
width = width // 16 * 16
# resize the control image
control_img = control_img.resize((width, height), Image.LANCZOS)
output = pipeline(
image=control_img,
prompt_embeds=conditional_embeds.text_embeds.to(
self.device_torch, dtype=self.torch_dtype),
negative_prompt_embeds=unconditional_embeds.text_embeds.to(
self.device_torch, dtype=self.torch_dtype),
height=height,
width=width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
num_frames=gen_config.num_frames,
generator=generator,
return_dict=False,
output_type="pil",
**extra
)[0]
# shape = [1, frames, channels, height, width]
batch_item = output[0] # list of pil images
if gen_config.num_frames > 1:
return batch_item # return the frames.
else:
# get just the first image
img = batch_item[0]
return img
def preprocess_clip_image(self, image_n1p1):
# tensor shape: (bs, ch, height, width) with values in range [-1, 1]
# Convert from [-1, 1] to [0, 1] range
tensor = (image_n1p1 + 1) / 2
# Resize to 224x224 (using bilinear interpolation, which is resample=3 in PIL)
if tensor.shape[2] != 224 or tensor.shape[3] != 224:
tensor = F.interpolate(tensor, size=(224, 224), mode='bilinear', align_corners=False)
# Normalize with mean and std
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(tensor.device)
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(tensor.device)
tensor = (tensor - mean) / std
return tensor
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
batch: DataLoaderBatchDTO,
**kwargs
):
# videos come in (bs, num_frames, channels, height, width)
# images come in (bs, channels, height, width)
with torch.no_grad():
frames = batch.tensor
if len(frames.shape) == 4:
first_frames = frames
elif len(frames.shape) == 5:
first_frames = frames[:, 0]
else:
raise ValueError(f"Unknown frame shape {frames.shape}")
# first_frames shape is (bs, channels, height, width), -1 to 1
preprocessed_frames = self.preprocess_clip_image(first_frames)
preprocessed_frames = preprocessed_frames.to(self.device_torch, dtype=self.torch_dtype)
# preprocessed_frame shape is (bs, 3, 224, 224)
self.image_encoder.to(self.device_torch)
image_embeds_full = self.image_encoder(preprocessed_frames, output_hidden_states=True)
image_embeds = image_embeds_full.hidden_states[-2]
image_embeds = image_embeds.to(self.device_torch, dtype=self.torch_dtype)
# Add conditioning using the standalone function
conditioned_latent = add_first_frame_conditioning(
latent_model_input=latent_model_input,
first_frame=first_frames,
vae=self.vae
)
noise_pred = self.model(
hidden_states=conditioned_latent,
timestep=timestep,
encoder_hidden_states=text_embeddings.text_embeds,
encoder_hidden_states_image=image_embeds,
return_dict=False,
**kwargs
)[0]
return noise_pred |