ramimu's picture
Upload 586 files
1c72248 verified
# based heavily on https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from toolkit.network_mixins import ToolkitModuleMixin
from typing import TYPE_CHECKING, Union, List
from optimum.quanto import QBytesTensor, QTensor
if TYPE_CHECKING:
from toolkit.lora_special import LoRASpecialNetwork
def factorization(dimension: int, factor: int = -1) -> tuple[int, int]:
'''
return a tuple of two value of input dimension decomposed by the number closest to factor
second value is higher or equal than first value.
In LoRA with Kroneckor Product, first value is a value for weight scale.
secon value is a value for weight.
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
examples)
factor
-1 2 4 8 16 ...
127 -> 127, 1 127 -> 127, 1 127 -> 127, 1 127 -> 127, 1 127 -> 127, 1
128 -> 16, 8 128 -> 64, 2 128 -> 32, 4 128 -> 16, 8 128 -> 16, 8
250 -> 125, 2 250 -> 125, 2 250 -> 125, 2 250 -> 125, 2 250 -> 125, 2
360 -> 45, 8 360 -> 180, 2 360 -> 90, 4 360 -> 45, 8 360 -> 45, 8
512 -> 32, 16 512 -> 256, 2 512 -> 128, 4 512 -> 64, 8 512 -> 32, 16
1024 -> 32, 32 1024 -> 512, 2 1024 -> 256, 4 1024 -> 128, 8 1024 -> 64, 16
'''
if factor > 0 and (dimension % factor) == 0:
m = factor
n = dimension // factor
return m, n
if factor == -1:
factor = dimension
m, n = 1, dimension
length = m + n
while m < n:
new_m = m + 1
while dimension % new_m != 0:
new_m += 1
new_n = dimension // new_m
if new_m + new_n > length or new_m > factor:
break
else:
m, n = new_m, new_n
if m > n:
n, m = m, n
return m, n
def make_weight_cp(t, wa, wb):
rebuild2 = torch.einsum('i j k l, i p, j r -> p r k l',
t, wa, wb) # [c, d, k1, k2]
return rebuild2
def make_kron(w1, w2, scale):
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
rebuild = torch.kron(w1, w2)
return rebuild*scale
class LokrModule(ToolkitModuleMixin, nn.Module):
def __init__(
self,
lora_name,
org_module: nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=0.,
rank_dropout=0.,
module_dropout=0.,
use_cp=False,
decompose_both=False,
network: 'LoRASpecialNetwork' = None,
factor: int = -1, # factorization factor
**kwargs,
):
""" if alpha == 0 or None, alpha is rank (no scaling). """
ToolkitModuleMixin.__init__(self, network=network)
torch.nn.Module.__init__(self)
factor = int(factor)
self.lora_name = lora_name
self.lora_dim = lora_dim
self.cp = False
self.use_w1 = False
self.use_w2 = False
self.can_merge_in = True
self.shape = org_module.weight.shape
if org_module.__class__.__name__ == 'Conv2d':
in_dim = org_module.in_channels
k_size = org_module.kernel_size
out_dim = org_module.out_channels
in_m, in_n = factorization(in_dim, factor)
out_l, out_k = factorization(out_dim, factor)
# ((a, b), (c, d), *k_size)
shape = ((out_l, out_k), (in_m, in_n), *k_size)
self.cp = use_cp and k_size != (1, 1)
if decompose_both and lora_dim < max(shape[0][0], shape[1][0])/2:
self.lokr_w1_a = nn.Parameter(
torch.empty(shape[0][0], lora_dim))
self.lokr_w1_b = nn.Parameter(
torch.empty(lora_dim, shape[1][0]))
else:
self.use_w1 = True
self.lokr_w1 = nn.Parameter(torch.empty(
shape[0][0], shape[1][0])) # a*c, 1-mode
if lora_dim >= max(shape[0][1], shape[1][1])/2:
self.use_w2 = True
self.lokr_w2 = nn.Parameter(torch.empty(
shape[0][1], shape[1][1], *k_size))
elif self.cp:
self.lokr_t2 = nn.Parameter(torch.empty(
lora_dim, lora_dim, shape[2], shape[3]))
self.lokr_w2_a = nn.Parameter(
torch.empty(lora_dim, shape[0][1])) # b, 1-mode
self.lokr_w2_b = nn.Parameter(
torch.empty(lora_dim, shape[1][1])) # d, 2-mode
else: # Conv2d not cp
# bigger part. weight and LoRA. [b, dim] x [dim, d*k1*k2]
self.lokr_w2_a = nn.Parameter(
torch.empty(shape[0][1], lora_dim))
self.lokr_w2_b = nn.Parameter(torch.empty(
lora_dim, shape[1][1]*shape[2]*shape[3]))
# w1 ⊗ (w2_a x w2_b) = (a, b)⊗((c, dim)x(dim, d*k1*k2)) = (a, b)⊗(c, d*k1*k2) = (ac, bd*k1*k2)
self.op = F.conv2d
self.extra_args = {
"stride": org_module.stride,
"padding": org_module.padding,
"dilation": org_module.dilation,
"groups": org_module.groups
}
else: # Linear
in_dim = org_module.in_features
out_dim = org_module.out_features
in_m, in_n = factorization(in_dim, factor)
out_l, out_k = factorization(out_dim, factor)
# ((a, b), (c, d)), out_dim = a*c, in_dim = b*d
shape = ((out_l, out_k), (in_m, in_n))
# smaller part. weight scale
if decompose_both and lora_dim < max(shape[0][0], shape[1][0])/2:
self.lokr_w1_a = nn.Parameter(
torch.empty(shape[0][0], lora_dim))
self.lokr_w1_b = nn.Parameter(
torch.empty(lora_dim, shape[1][0]))
else:
self.use_w1 = True
self.lokr_w1 = nn.Parameter(torch.empty(
shape[0][0], shape[1][0])) # a*c, 1-mode
if lora_dim < max(shape[0][1], shape[1][1])/2:
# bigger part. weight and LoRA. [b, dim] x [dim, d]
self.lokr_w2_a = nn.Parameter(
torch.empty(shape[0][1], lora_dim))
self.lokr_w2_b = nn.Parameter(
torch.empty(lora_dim, shape[1][1]))
# w1 ⊗ (w2_a x w2_b) = (a, b)⊗((c, dim)x(dim, d)) = (a, b)⊗(c, d) = (ac, bd)
else:
self.use_w2 = True
self.lokr_w2 = nn.Parameter(
torch.empty(shape[0][1], shape[1][1]))
self.op = F.linear
self.extra_args = {}
self.dropout = dropout
if dropout:
print("[WARN]LoKr haven't implemented normal dropout yet.")
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
if isinstance(alpha, torch.Tensor):
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = lora_dim if alpha is None or alpha == 0 else alpha
if self.use_w2 and self.use_w1:
# use scale = 1
alpha = lora_dim
self.scale = alpha / self.lora_dim
self.register_buffer('alpha', torch.tensor(alpha)) # treat as constant
if self.use_w2:
torch.nn.init.constant_(self.lokr_w2, 0)
else:
if self.cp:
torch.nn.init.kaiming_uniform_(self.lokr_t2, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(self.lokr_w2_a, a=math.sqrt(5))
torch.nn.init.constant_(self.lokr_w2_b, 0)
if self.use_w1:
torch.nn.init.kaiming_uniform_(self.lokr_w1, a=math.sqrt(5))
else:
torch.nn.init.kaiming_uniform_(self.lokr_w1_a, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(self.lokr_w1_b, a=math.sqrt(5))
self.multiplier = multiplier
self.org_module = [org_module]
weight = make_kron(
self.lokr_w1 if self.use_w1 else [email protected]_w1_b,
(self.lokr_w2 if self.use_w2
else make_weight_cp(self.lokr_t2, self.lokr_w2_a, self.lokr_w2_b) if self.cp
else [email protected]_w2_b),
torch.tensor(self.multiplier * self.scale)
)
assert torch.sum(torch.isnan(weight)) == 0, "weight is nan"
# Same as locon.py
def apply_to(self):
self.org_forward = self.org_module[0].forward
self.org_module[0].forward = self.forward
def get_weight(self, orig_weight=None):
weight = make_kron(
self.lokr_w1 if self.use_w1 else [email protected]_w1_b,
(self.lokr_w2 if self.use_w2
else make_weight_cp(self.lokr_t2, self.lokr_w2_a, self.lokr_w2_b) if self.cp
else [email protected]_w2_b),
torch.tensor(self.scale)
)
if orig_weight is not None:
weight = weight.reshape(orig_weight.shape)
if self.training and self.rank_dropout:
drop = torch.rand(weight.size(0)) < self.rank_dropout
weight *= drop.view(-1, [1] *
len(weight.shape[1:])).to(weight.device)
return weight
@torch.no_grad()
def merge_in(self, merge_weight=1.0):
if not self.can_merge_in:
return
# extract weight from org_module
org_sd = self.org_module[0].state_dict()
# todo find a way to merge in weights when doing quantized model
if 'weight._data' in org_sd:
# quantized weight
return
weight_key = "weight"
if 'weight._data' in org_sd:
# quantized weight
weight_key = "weight._data"
orig_dtype = org_sd[weight_key].dtype
weight = org_sd[weight_key].float()
scale = self.scale
# handle trainable scaler method locon does
if hasattr(self, 'scalar'):
scale = scale * self.scalar
lokr_weight = self.get_weight(weight)
merged_weight = (
weight
+ (lokr_weight * merge_weight).to(weight.device, dtype=weight.dtype)
)
# set weight to org_module
org_sd[weight_key] = merged_weight.to(orig_dtype)
self.org_module[0].load_state_dict(org_sd)
def get_orig_weight(self):
weight = self.org_module[0].weight
if isinstance(weight, QTensor) or isinstance(weight, QBytesTensor):
return weight.dequantize().data.detach()
else:
return weight.data.detach()
def get_orig_bias(self):
if hasattr(self.org_module[0], 'bias') and self.org_module[0].bias is not None:
if isinstance(self.org_module[0].bias, QTensor) or isinstance(self.org_module[0].bias, QBytesTensor):
return self.org_module[0].bias.dequantize().data.detach()
else:
return self.org_module[0].bias.data.detach()
return None
def _call_forward(self, x):
if isinstance(x, QTensor) or isinstance(x, QBytesTensor):
x = x.dequantize()
orig_dtype = x.dtype
orig_weight = self.get_orig_weight()
lokr_weight = self.get_weight(orig_weight).to(dtype=orig_weight.dtype)
multiplier = self.network_ref().torch_multiplier
if x.dtype != orig_weight.dtype:
x = x.to(dtype=orig_weight.dtype)
# we do not currently support split batch multipliers for lokr. Just do a mean
multiplier = torch.mean(multiplier)
weight = (
orig_weight
+ lokr_weight * multiplier
)
bias = self.get_orig_bias()
if bias is not None:
bias = bias.to(weight.device, dtype=weight.dtype)
output = self.op(
x,
weight.view(self.shape),
bias,
**self.extra_args
)
return output.to(orig_dtype)