Spaces:
Paused
Paused
File size: 12,231 Bytes
1c72248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# based heavily on https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from toolkit.network_mixins import ToolkitModuleMixin
from typing import TYPE_CHECKING, Union, List
from optimum.quanto import QBytesTensor, QTensor
if TYPE_CHECKING:
from toolkit.lora_special import LoRASpecialNetwork
def factorization(dimension: int, factor: int = -1) -> tuple[int, int]:
'''
return a tuple of two value of input dimension decomposed by the number closest to factor
second value is higher or equal than first value.
In LoRA with Kroneckor Product, first value is a value for weight scale.
secon value is a value for weight.
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
examples)
factor
-1 2 4 8 16 ...
127 -> 127, 1 127 -> 127, 1 127 -> 127, 1 127 -> 127, 1 127 -> 127, 1
128 -> 16, 8 128 -> 64, 2 128 -> 32, 4 128 -> 16, 8 128 -> 16, 8
250 -> 125, 2 250 -> 125, 2 250 -> 125, 2 250 -> 125, 2 250 -> 125, 2
360 -> 45, 8 360 -> 180, 2 360 -> 90, 4 360 -> 45, 8 360 -> 45, 8
512 -> 32, 16 512 -> 256, 2 512 -> 128, 4 512 -> 64, 8 512 -> 32, 16
1024 -> 32, 32 1024 -> 512, 2 1024 -> 256, 4 1024 -> 128, 8 1024 -> 64, 16
'''
if factor > 0 and (dimension % factor) == 0:
m = factor
n = dimension // factor
return m, n
if factor == -1:
factor = dimension
m, n = 1, dimension
length = m + n
while m < n:
new_m = m + 1
while dimension % new_m != 0:
new_m += 1
new_n = dimension // new_m
if new_m + new_n > length or new_m > factor:
break
else:
m, n = new_m, new_n
if m > n:
n, m = m, n
return m, n
def make_weight_cp(t, wa, wb):
rebuild2 = torch.einsum('i j k l, i p, j r -> p r k l',
t, wa, wb) # [c, d, k1, k2]
return rebuild2
def make_kron(w1, w2, scale):
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
rebuild = torch.kron(w1, w2)
return rebuild*scale
class LokrModule(ToolkitModuleMixin, nn.Module):
def __init__(
self,
lora_name,
org_module: nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=0.,
rank_dropout=0.,
module_dropout=0.,
use_cp=False,
decompose_both=False,
network: 'LoRASpecialNetwork' = None,
factor: int = -1, # factorization factor
**kwargs,
):
""" if alpha == 0 or None, alpha is rank (no scaling). """
ToolkitModuleMixin.__init__(self, network=network)
torch.nn.Module.__init__(self)
factor = int(factor)
self.lora_name = lora_name
self.lora_dim = lora_dim
self.cp = False
self.use_w1 = False
self.use_w2 = False
self.can_merge_in = True
self.shape = org_module.weight.shape
if org_module.__class__.__name__ == 'Conv2d':
in_dim = org_module.in_channels
k_size = org_module.kernel_size
out_dim = org_module.out_channels
in_m, in_n = factorization(in_dim, factor)
out_l, out_k = factorization(out_dim, factor)
# ((a, b), (c, d), *k_size)
shape = ((out_l, out_k), (in_m, in_n), *k_size)
self.cp = use_cp and k_size != (1, 1)
if decompose_both and lora_dim < max(shape[0][0], shape[1][0])/2:
self.lokr_w1_a = nn.Parameter(
torch.empty(shape[0][0], lora_dim))
self.lokr_w1_b = nn.Parameter(
torch.empty(lora_dim, shape[1][0]))
else:
self.use_w1 = True
self.lokr_w1 = nn.Parameter(torch.empty(
shape[0][0], shape[1][0])) # a*c, 1-mode
if lora_dim >= max(shape[0][1], shape[1][1])/2:
self.use_w2 = True
self.lokr_w2 = nn.Parameter(torch.empty(
shape[0][1], shape[1][1], *k_size))
elif self.cp:
self.lokr_t2 = nn.Parameter(torch.empty(
lora_dim, lora_dim, shape[2], shape[3]))
self.lokr_w2_a = nn.Parameter(
torch.empty(lora_dim, shape[0][1])) # b, 1-mode
self.lokr_w2_b = nn.Parameter(
torch.empty(lora_dim, shape[1][1])) # d, 2-mode
else: # Conv2d not cp
# bigger part. weight and LoRA. [b, dim] x [dim, d*k1*k2]
self.lokr_w2_a = nn.Parameter(
torch.empty(shape[0][1], lora_dim))
self.lokr_w2_b = nn.Parameter(torch.empty(
lora_dim, shape[1][1]*shape[2]*shape[3]))
# w1 ⊗ (w2_a x w2_b) = (a, b)⊗((c, dim)x(dim, d*k1*k2)) = (a, b)⊗(c, d*k1*k2) = (ac, bd*k1*k2)
self.op = F.conv2d
self.extra_args = {
"stride": org_module.stride,
"padding": org_module.padding,
"dilation": org_module.dilation,
"groups": org_module.groups
}
else: # Linear
in_dim = org_module.in_features
out_dim = org_module.out_features
in_m, in_n = factorization(in_dim, factor)
out_l, out_k = factorization(out_dim, factor)
# ((a, b), (c, d)), out_dim = a*c, in_dim = b*d
shape = ((out_l, out_k), (in_m, in_n))
# smaller part. weight scale
if decompose_both and lora_dim < max(shape[0][0], shape[1][0])/2:
self.lokr_w1_a = nn.Parameter(
torch.empty(shape[0][0], lora_dim))
self.lokr_w1_b = nn.Parameter(
torch.empty(lora_dim, shape[1][0]))
else:
self.use_w1 = True
self.lokr_w1 = nn.Parameter(torch.empty(
shape[0][0], shape[1][0])) # a*c, 1-mode
if lora_dim < max(shape[0][1], shape[1][1])/2:
# bigger part. weight and LoRA. [b, dim] x [dim, d]
self.lokr_w2_a = nn.Parameter(
torch.empty(shape[0][1], lora_dim))
self.lokr_w2_b = nn.Parameter(
torch.empty(lora_dim, shape[1][1]))
# w1 ⊗ (w2_a x w2_b) = (a, b)⊗((c, dim)x(dim, d)) = (a, b)⊗(c, d) = (ac, bd)
else:
self.use_w2 = True
self.lokr_w2 = nn.Parameter(
torch.empty(shape[0][1], shape[1][1]))
self.op = F.linear
self.extra_args = {}
self.dropout = dropout
if dropout:
print("[WARN]LoKr haven't implemented normal dropout yet.")
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
if isinstance(alpha, torch.Tensor):
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = lora_dim if alpha is None or alpha == 0 else alpha
if self.use_w2 and self.use_w1:
# use scale = 1
alpha = lora_dim
self.scale = alpha / self.lora_dim
self.register_buffer('alpha', torch.tensor(alpha)) # treat as constant
if self.use_w2:
torch.nn.init.constant_(self.lokr_w2, 0)
else:
if self.cp:
torch.nn.init.kaiming_uniform_(self.lokr_t2, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(self.lokr_w2_a, a=math.sqrt(5))
torch.nn.init.constant_(self.lokr_w2_b, 0)
if self.use_w1:
torch.nn.init.kaiming_uniform_(self.lokr_w1, a=math.sqrt(5))
else:
torch.nn.init.kaiming_uniform_(self.lokr_w1_a, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(self.lokr_w1_b, a=math.sqrt(5))
self.multiplier = multiplier
self.org_module = [org_module]
weight = make_kron(
self.lokr_w1 if self.use_w1 else [email protected]_w1_b,
(self.lokr_w2 if self.use_w2
else make_weight_cp(self.lokr_t2, self.lokr_w2_a, self.lokr_w2_b) if self.cp
else [email protected]_w2_b),
torch.tensor(self.multiplier * self.scale)
)
assert torch.sum(torch.isnan(weight)) == 0, "weight is nan"
# Same as locon.py
def apply_to(self):
self.org_forward = self.org_module[0].forward
self.org_module[0].forward = self.forward
def get_weight(self, orig_weight=None):
weight = make_kron(
self.lokr_w1 if self.use_w1 else [email protected]_w1_b,
(self.lokr_w2 if self.use_w2
else make_weight_cp(self.lokr_t2, self.lokr_w2_a, self.lokr_w2_b) if self.cp
else [email protected]_w2_b),
torch.tensor(self.scale)
)
if orig_weight is not None:
weight = weight.reshape(orig_weight.shape)
if self.training and self.rank_dropout:
drop = torch.rand(weight.size(0)) < self.rank_dropout
weight *= drop.view(-1, [1] *
len(weight.shape[1:])).to(weight.device)
return weight
@torch.no_grad()
def merge_in(self, merge_weight=1.0):
if not self.can_merge_in:
return
# extract weight from org_module
org_sd = self.org_module[0].state_dict()
# todo find a way to merge in weights when doing quantized model
if 'weight._data' in org_sd:
# quantized weight
return
weight_key = "weight"
if 'weight._data' in org_sd:
# quantized weight
weight_key = "weight._data"
orig_dtype = org_sd[weight_key].dtype
weight = org_sd[weight_key].float()
scale = self.scale
# handle trainable scaler method locon does
if hasattr(self, 'scalar'):
scale = scale * self.scalar
lokr_weight = self.get_weight(weight)
merged_weight = (
weight
+ (lokr_weight * merge_weight).to(weight.device, dtype=weight.dtype)
)
# set weight to org_module
org_sd[weight_key] = merged_weight.to(orig_dtype)
self.org_module[0].load_state_dict(org_sd)
def get_orig_weight(self):
weight = self.org_module[0].weight
if isinstance(weight, QTensor) or isinstance(weight, QBytesTensor):
return weight.dequantize().data.detach()
else:
return weight.data.detach()
def get_orig_bias(self):
if hasattr(self.org_module[0], 'bias') and self.org_module[0].bias is not None:
if isinstance(self.org_module[0].bias, QTensor) or isinstance(self.org_module[0].bias, QBytesTensor):
return self.org_module[0].bias.dequantize().data.detach()
else:
return self.org_module[0].bias.data.detach()
return None
def _call_forward(self, x):
if isinstance(x, QTensor) or isinstance(x, QBytesTensor):
x = x.dequantize()
orig_dtype = x.dtype
orig_weight = self.get_orig_weight()
lokr_weight = self.get_weight(orig_weight).to(dtype=orig_weight.dtype)
multiplier = self.network_ref().torch_multiplier
if x.dtype != orig_weight.dtype:
x = x.to(dtype=orig_weight.dtype)
# we do not currently support split batch multipliers for lokr. Just do a mean
multiplier = torch.mean(multiplier)
weight = (
orig_weight
+ lokr_weight * multiplier
)
bias = self.get_orig_bias()
if bias is not None:
bias = bias.to(weight.device, dtype=weight.dtype)
output = self.op(
x,
weight.view(self.shape),
bias,
**self.extra_args
)
return output.to(orig_dtype)
|