Spaces:
Paused
Paused
# DONT USE THIS!. IT DOES NOT WORK YET! | |
# Will revisit this when they release more info on how it was trained. | |
import weakref | |
from diffusers import CogView4Pipeline | |
import torch | |
import yaml | |
from toolkit.basic import flush | |
from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
from toolkit.dequantize import patch_dequantization_on_save | |
from toolkit.models.base_model import BaseModel | |
from toolkit.prompt_utils import PromptEmbeds | |
import os | |
import copy | |
from toolkit.config_modules import ModelConfig, GenerateImageConfig, ModelArch | |
import torch | |
import diffusers | |
from diffusers import AutoencoderKL, CogView4Transformer2DModel, CogView4Pipeline | |
from optimum.quanto import freeze, qfloat8, QTensor, qint4 | |
from toolkit.util.quantize import quantize, get_qtype | |
from transformers import GlmModel, AutoTokenizer | |
from diffusers import FlowMatchEulerDiscreteScheduler | |
from typing import TYPE_CHECKING | |
from toolkit.accelerator import unwrap_model | |
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
if TYPE_CHECKING: | |
from toolkit.lora_special import LoRASpecialNetwork | |
# remove this after a bug is fixed in diffusers code. This is a workaround. | |
class FakeModel: | |
def __init__(self, model): | |
self.model_ref = weakref.ref(model) | |
pass | |
def device(self): | |
return self.model_ref().device | |
scheduler_config = { | |
"base_image_seq_len": 256, | |
"base_shift": 0.25, | |
"invert_sigmas": False, | |
"max_image_seq_len": 4096, | |
"max_shift": 0.75, | |
"num_train_timesteps": 1000, | |
"shift": 1.0, | |
"shift_terminal": None, | |
"time_shift_type": "linear", | |
"use_beta_sigmas": False, | |
"use_dynamic_shifting": True, | |
"use_exponential_sigmas": False, | |
"use_karras_sigmas": False | |
} | |
class CogView4(BaseModel): | |
arch = 'cogview4' | |
def __init__( | |
self, | |
device, | |
model_config: ModelConfig, | |
dtype='bf16', | |
custom_pipeline=None, | |
noise_scheduler=None, | |
**kwargs | |
): | |
super().__init__(device, model_config, dtype, | |
custom_pipeline, noise_scheduler, **kwargs) | |
self.is_flow_matching = True | |
self.is_transformer = True | |
self.target_lora_modules = ['CogView4Transformer2DModel'] | |
# cache for holding noise | |
self.effective_noise = None | |
# static method to get the scheduler | |
def get_train_scheduler(): | |
scheduler = CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
return scheduler | |
def load_model(self): | |
dtype = self.torch_dtype | |
base_model_path = "THUDM/CogView4-6B" | |
model_path = self.model_config.name_or_path | |
self.print_and_status_update("Loading CogView4 model") | |
# base_model_path = "black-forest-labs/FLUX.1-schnell" | |
base_model_path = self.model_config.name_or_path_original | |
subfolder = 'transformer' | |
transformer_path = model_path | |
if os.path.exists(transformer_path): | |
subfolder = None | |
transformer_path = os.path.join(transformer_path, 'transformer') | |
# check if the path is a full checkpoint. | |
te_folder_path = os.path.join(model_path, 'text_encoder') | |
# if we have the te, this folder is a full checkpoint, use it as the base | |
if os.path.exists(te_folder_path): | |
base_model_path = model_path | |
self.print_and_status_update("Loading GlmModel") | |
tokenizer = AutoTokenizer.from_pretrained( | |
base_model_path, subfolder="tokenizer", torch_dtype=dtype) | |
text_encoder = GlmModel.from_pretrained( | |
base_model_path, subfolder="text_encoder", torch_dtype=dtype) | |
text_encoder.to(self.device_torch, dtype=dtype) | |
flush() | |
if self.model_config.quantize_te: | |
self.print_and_status_update("Quantizing GlmModel") | |
quantize(text_encoder, weights=get_qtype(self.model_config.qtype)) | |
freeze(text_encoder) | |
flush() | |
# hack to fix diffusers bug workaround | |
text_encoder.model = FakeModel(text_encoder) | |
self.print_and_status_update("Loading transformer") | |
transformer = CogView4Transformer2DModel.from_pretrained( | |
transformer_path, | |
subfolder=subfolder, | |
torch_dtype=dtype, | |
) | |
if self.model_config.split_model_over_gpus: | |
raise ValueError( | |
"Splitting model over gpus is not supported for CogViewModels models") | |
transformer.to(self.quantize_device, dtype=dtype) | |
flush() | |
if self.model_config.assistant_lora_path is not None or self.model_config.inference_lora_path is not None: | |
raise ValueError( | |
"Assistant LoRA is not supported for CogViewModels models currently") | |
if self.model_config.lora_path is not None: | |
raise ValueError( | |
"Loading LoRA is not supported for CogViewModels models currently") | |
flush() | |
if self.model_config.quantize: | |
quantization_args = self.model_config.quantize_kwargs | |
if 'exclude' not in quantization_args: | |
quantization_args['exclude'] = [] | |
if 'include' not in quantization_args: | |
quantization_args['include'] = [] | |
# Be more specific with the include pattern to exactly match transformer blocks | |
quantization_args['include'] += ["transformer_blocks.*"] | |
# Exclude all LayerNorm layers within transformer blocks | |
quantization_args['exclude'] += [ | |
"transformer_blocks.*.norm1", | |
"transformer_blocks.*.norm2", | |
"transformer_blocks.*.norm2_context", | |
"transformer_blocks.*.attn1.norm_q", | |
"transformer_blocks.*.attn1.norm_k" | |
] | |
# patch the state dict method | |
patch_dequantization_on_save(transformer) | |
quantization_type = get_qtype(self.model_config.qtype) | |
self.print_and_status_update("Quantizing transformer") | |
quantize(transformer, weights=quantization_type, **quantization_args) | |
freeze(transformer) | |
transformer.to(self.device_torch) | |
else: | |
transformer.to(self.device_torch, dtype=dtype) | |
flush() | |
scheduler = CogView4.get_train_scheduler() | |
self.print_and_status_update("Loading VAE") | |
vae = AutoencoderKL.from_pretrained( | |
base_model_path, subfolder="vae", torch_dtype=dtype) | |
flush() | |
self.print_and_status_update("Making pipe") | |
pipe: CogView4Pipeline = CogView4Pipeline( | |
scheduler=scheduler, | |
text_encoder=None, | |
tokenizer=tokenizer, | |
vae=vae, | |
transformer=None, | |
) | |
pipe.text_encoder = text_encoder | |
pipe.transformer = transformer | |
self.print_and_status_update("Preparing Model") | |
text_encoder = pipe.text_encoder | |
tokenizer = pipe.tokenizer | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
text_encoder.to(self.device_torch) | |
text_encoder.requires_grad_(False) | |
text_encoder.eval() | |
pipe.transformer = pipe.transformer.to(self.device_torch) | |
flush() | |
self.pipeline = pipe | |
self.model = transformer | |
self.vae = vae | |
self.text_encoder = text_encoder | |
self.tokenizer = tokenizer | |
def get_generation_pipeline(self): | |
scheduler = CogView4.get_train_scheduler() | |
pipeline = CogView4Pipeline( | |
vae=self.vae, | |
transformer=self.unet, | |
text_encoder=self.text_encoder, | |
tokenizer=self.tokenizer, | |
scheduler=scheduler, | |
) | |
return pipeline | |
def generate_single_image( | |
self, | |
pipeline: CogView4Pipeline, | |
gen_config: GenerateImageConfig, | |
conditional_embeds: PromptEmbeds, | |
unconditional_embeds: PromptEmbeds, | |
generator: torch.Generator, | |
extra: dict, | |
): | |
img = pipeline( | |
prompt_embeds=conditional_embeds.text_embeds.to( | |
self.device_torch, dtype=self.torch_dtype), | |
negative_prompt_embeds=unconditional_embeds.text_embeds.to( | |
self.device_torch, dtype=self.torch_dtype), | |
height=gen_config.height, | |
width=gen_config.width, | |
num_inference_steps=gen_config.num_inference_steps, | |
guidance_scale=gen_config.guidance_scale, | |
latents=gen_config.latents, | |
generator=generator, | |
**extra | |
).images[0] | |
return img | |
def get_noise_prediction( | |
self, | |
latent_model_input: torch.Tensor, | |
timestep: torch.Tensor, # 0 to 1000 scale | |
text_embeddings: PromptEmbeds, | |
**kwargs | |
): | |
# target_size = (height, width) | |
target_size = latent_model_input.shape[-2:] | |
# multiply by 8 | |
target_size = (target_size[0] * 8, target_size[1] * 8) | |
crops_coords_top_left = torch.tensor( | |
[(0, 0)], dtype=self.torch_dtype, device=self.device_torch) | |
original_size = torch.tensor( | |
[target_size], dtype=self.torch_dtype, device=self.device_torch) | |
target_size = original_size.clone() | |
noise_pred_cond = self.model( | |
hidden_states=latent_model_input, | |
encoder_hidden_states=text_embeddings.text_embeds, | |
timestep=timestep, | |
original_size=original_size, | |
target_size=target_size, | |
crop_coords=crops_coords_top_left, | |
return_dict=False, | |
)[0] | |
return noise_pred_cond | |
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
prompt_embeds, _ = self.pipeline.encode_prompt( | |
prompt, | |
do_classifier_free_guidance=False, | |
device=self.device_torch, | |
dtype=self.torch_dtype, | |
) | |
return PromptEmbeds(prompt_embeds) | |
def get_model_has_grad(self): | |
return self.model.proj_out.weight.requires_grad | |
def get_te_has_grad(self): | |
return self.text_encoder.layers[0].mlp.down_proj.weight.requires_grad | |
def save_model(self, output_path, meta, save_dtype): | |
# only save the unet | |
transformer: CogView4Transformer2DModel = unwrap_model(self.model) | |
transformer.save_pretrained( | |
save_directory=os.path.join(output_path, 'transformer'), | |
safe_serialization=True, | |
) | |
meta_path = os.path.join(output_path, 'aitk_meta.yaml') | |
with open(meta_path, 'w') as f: | |
yaml.dump(meta, f) | |
def get_loss_target(self, *args, **kwargs): | |
noise = kwargs.get('noise') | |
effective_noise = self.effective_noise | |
batch = kwargs.get('batch') | |
if batch is None: | |
raise ValueError("Batch is not provided") | |
if noise is None: | |
raise ValueError("Noise is not provided") | |
# return batch.latents | |
# return (batch.latents - noise).detach() | |
return (noise - batch.latents).detach() | |
# return (batch.latents).detach() | |
# return (effective_noise - batch.latents).detach() | |
def _get_low_res_latents(self, latents): | |
# todo prevent needing to do this and grab the tensor another way. | |
with torch.no_grad(): | |
# Decode latents to image space | |
images = self.decode_latents( | |
latents, device=latents.device, dtype=latents.dtype) | |
# Downsample by a factor of 2 using bilinear interpolation | |
B, C, H, W = images.shape | |
low_res_images = torch.nn.functional.interpolate( | |
images, | |
size=(H // 2, W // 2), | |
mode="bilinear", | |
align_corners=False | |
) | |
# Upsample back to original resolution to match expected VAE input dimensions | |
upsampled_low_res_images = torch.nn.functional.interpolate( | |
low_res_images, | |
size=(H, W), | |
mode="bilinear", | |
align_corners=False | |
) | |
# Encode the low-resolution images back to latent space | |
low_res_latents = self.encode_images( | |
upsampled_low_res_images, device=latents.device, dtype=latents.dtype) | |
return low_res_latents | |
# def add_noise( | |
# self, | |
# original_samples: torch.FloatTensor, | |
# noise: torch.FloatTensor, | |
# timesteps: torch.IntTensor, | |
# **kwargs, | |
# ) -> torch.FloatTensor: | |
# relay_start_point = 500 | |
# # Store original samples for loss calculation | |
# self.original_samples = original_samples | |
# # Prepare chunks for batch processing | |
# original_samples_chunks = torch.chunk( | |
# original_samples, original_samples.shape[0], dim=0) | |
# noise_chunks = torch.chunk(noise, noise.shape[0], dim=0) | |
# timesteps_chunks = torch.chunk(timesteps, timesteps.shape[0], dim=0) | |
# # Get the low res latents only if needed | |
# low_res_latents_chunks = None | |
# # Handle case where timesteps is a single value for all samples | |
# if len(timesteps_chunks) == 1 and len(timesteps_chunks) != len(original_samples_chunks): | |
# timesteps_chunks = [timesteps_chunks[0]] * len(original_samples_chunks) | |
# noisy_latents_chunks = [] | |
# effective_noise_chunks = [] # Store the effective noise for each sample | |
# for idx in range(original_samples.shape[0]): | |
# t = timesteps_chunks[idx] | |
# t_01 = (t / 1000).to(original_samples_chunks[idx].device) | |
# # Flowmatching interpolation between original and noise | |
# if t > relay_start_point: | |
# # Standard flowmatching - direct linear interpolation | |
# noisy_latents = (1 - t_01) * original_samples_chunks[idx] + t_01 * noise_chunks[idx] | |
# effective_noise_chunks.append(noise_chunks[idx]) # Effective noise is just the noise | |
# else: | |
# # Relay flowmatching case - only compute low_res_latents if needed | |
# if low_res_latents_chunks is None: | |
# low_res_latents = self._get_low_res_latents(original_samples) | |
# low_res_latents_chunks = torch.chunk(low_res_latents, low_res_latents.shape[0], dim=0) | |
# # Calculate the relay ratio (0 to 1) | |
# t_ratio = t.float() / relay_start_point | |
# t_ratio = torch.clamp(t_ratio, 0.0, 1.0) | |
# # First blend between original and low-res based on t_ratio | |
# z0_t = (1 - t_ratio) * original_samples_chunks[idx] + t_ratio * low_res_latents_chunks[idx] | |
# added_lor_res_noise = z0_t - original_samples_chunks[idx] | |
# # Then apply flowmatching interpolation between this blended state and noise | |
# noisy_latents = (1 - t_01) * z0_t + t_01 * noise_chunks[idx] | |
# # For prediction target, we need to store the effective "source" | |
# effective_noise_chunks.append(noise_chunks[idx] + added_lor_res_noise) | |
# noisy_latents_chunks.append(noisy_latents) | |
# noisy_latents = torch.cat(noisy_latents_chunks, dim=0) | |
# self.effective_noise = torch.cat(effective_noise_chunks, dim=0) # Store for loss calculation | |
# return noisy_latents | |
# def add_noise( | |
# self, | |
# original_samples: torch.FloatTensor, | |
# noise: torch.FloatTensor, | |
# timesteps: torch.IntTensor, | |
# **kwargs, | |
# ) -> torch.FloatTensor: | |
# relay_start_point = 500 | |
# # Store original samples for loss calculation | |
# self.original_samples = original_samples | |
# # Prepare chunks for batch processing | |
# original_samples_chunks = torch.chunk( | |
# original_samples, original_samples.shape[0], dim=0) | |
# noise_chunks = torch.chunk(noise, noise.shape[0], dim=0) | |
# timesteps_chunks = torch.chunk(timesteps, timesteps.shape[0], dim=0) | |
# # Get the low res latents only if needed | |
# low_res_latents = self._get_low_res_latents(original_samples) | |
# low_res_latents_chunks = torch.chunk(low_res_latents, low_res_latents.shape[0], dim=0) | |
# # Handle case where timesteps is a single value for all samples | |
# if len(timesteps_chunks) == 1 and len(timesteps_chunks) != len(original_samples_chunks): | |
# timesteps_chunks = [timesteps_chunks[0]] * len(original_samples_chunks) | |
# noisy_latents_chunks = [] | |
# effective_noise_chunks = [] # Store the effective noise for each sample | |
# for idx in range(original_samples.shape[0]): | |
# t = timesteps_chunks[idx] | |
# t_01 = (t / 1000).to(original_samples_chunks[idx].device) | |
# lrln = low_res_latents_chunks[idx] - original_samples_chunks[idx] | |
# # lrln = lrln * (1 - t_01) | |
# # make the noise an interpolation between noise and low_res_latents with | |
# # being noise at t_01=1 and low_res_latents at t_01=0 | |
# new_noise = t_01 * noise_chunks[idx] + (1 - t_01) * lrln | |
# # new_noise = noise_chunks[idx] + lrln | |
# # new_noise = noise_chunks[idx] + lrln | |
# # Then apply flowmatching interpolation between this blended state and noise | |
# noisy_latents = (1 - t_01) * original_samples + t_01 * new_noise | |
# # For prediction target, we need to store the effective "source" | |
# effective_noise_chunks.append(new_noise) | |
# noisy_latents_chunks.append(noisy_latents) | |
# noisy_latents = torch.cat(noisy_latents_chunks, dim=0) | |
# self.effective_noise = torch.cat(effective_noise_chunks, dim=0) # Store for loss calculation | |
# return noisy_latents | |