Spaces:
Paused
Paused
File size: 18,065 Bytes
1c72248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# DONT USE THIS!. IT DOES NOT WORK YET!
# Will revisit this when they release more info on how it was trained.
import weakref
from diffusers import CogView4Pipeline
import torch
import yaml
from toolkit.basic import flush
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from toolkit.dequantize import patch_dequantization_on_save
from toolkit.models.base_model import BaseModel
from toolkit.prompt_utils import PromptEmbeds
import os
import copy
from toolkit.config_modules import ModelConfig, GenerateImageConfig, ModelArch
import torch
import diffusers
from diffusers import AutoencoderKL, CogView4Transformer2DModel, CogView4Pipeline
from optimum.quanto import freeze, qfloat8, QTensor, qint4
from toolkit.util.quantize import quantize, get_qtype
from transformers import GlmModel, AutoTokenizer
from diffusers import FlowMatchEulerDiscreteScheduler
from typing import TYPE_CHECKING
from toolkit.accelerator import unwrap_model
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
if TYPE_CHECKING:
from toolkit.lora_special import LoRASpecialNetwork
# remove this after a bug is fixed in diffusers code. This is a workaround.
class FakeModel:
def __init__(self, model):
self.model_ref = weakref.ref(model)
pass
@property
def device(self):
return self.model_ref().device
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": 0.25,
"invert_sigmas": False,
"max_image_seq_len": 4096,
"max_shift": 0.75,
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"time_shift_type": "linear",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False
}
class CogView4(BaseModel):
arch = 'cogview4'
def __init__(
self,
device,
model_config: ModelConfig,
dtype='bf16',
custom_pipeline=None,
noise_scheduler=None,
**kwargs
):
super().__init__(device, model_config, dtype,
custom_pipeline, noise_scheduler, **kwargs)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ['CogView4Transformer2DModel']
# cache for holding noise
self.effective_noise = None
# static method to get the scheduler
@staticmethod
def get_train_scheduler():
scheduler = CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
return scheduler
def load_model(self):
dtype = self.torch_dtype
base_model_path = "THUDM/CogView4-6B"
model_path = self.model_config.name_or_path
self.print_and_status_update("Loading CogView4 model")
# base_model_path = "black-forest-labs/FLUX.1-schnell"
base_model_path = self.model_config.name_or_path_original
subfolder = 'transformer'
transformer_path = model_path
if os.path.exists(transformer_path):
subfolder = None
transformer_path = os.path.join(transformer_path, 'transformer')
# check if the path is a full checkpoint.
te_folder_path = os.path.join(model_path, 'text_encoder')
# if we have the te, this folder is a full checkpoint, use it as the base
if os.path.exists(te_folder_path):
base_model_path = model_path
self.print_and_status_update("Loading GlmModel")
tokenizer = AutoTokenizer.from_pretrained(
base_model_path, subfolder="tokenizer", torch_dtype=dtype)
text_encoder = GlmModel.from_pretrained(
base_model_path, subfolder="text_encoder", torch_dtype=dtype)
text_encoder.to(self.device_torch, dtype=dtype)
flush()
if self.model_config.quantize_te:
self.print_and_status_update("Quantizing GlmModel")
quantize(text_encoder, weights=get_qtype(self.model_config.qtype))
freeze(text_encoder)
flush()
# hack to fix diffusers bug workaround
text_encoder.model = FakeModel(text_encoder)
self.print_and_status_update("Loading transformer")
transformer = CogView4Transformer2DModel.from_pretrained(
transformer_path,
subfolder=subfolder,
torch_dtype=dtype,
)
if self.model_config.split_model_over_gpus:
raise ValueError(
"Splitting model over gpus is not supported for CogViewModels models")
transformer.to(self.quantize_device, dtype=dtype)
flush()
if self.model_config.assistant_lora_path is not None or self.model_config.inference_lora_path is not None:
raise ValueError(
"Assistant LoRA is not supported for CogViewModels models currently")
if self.model_config.lora_path is not None:
raise ValueError(
"Loading LoRA is not supported for CogViewModels models currently")
flush()
if self.model_config.quantize:
quantization_args = self.model_config.quantize_kwargs
if 'exclude' not in quantization_args:
quantization_args['exclude'] = []
if 'include' not in quantization_args:
quantization_args['include'] = []
# Be more specific with the include pattern to exactly match transformer blocks
quantization_args['include'] += ["transformer_blocks.*"]
# Exclude all LayerNorm layers within transformer blocks
quantization_args['exclude'] += [
"transformer_blocks.*.norm1",
"transformer_blocks.*.norm2",
"transformer_blocks.*.norm2_context",
"transformer_blocks.*.attn1.norm_q",
"transformer_blocks.*.attn1.norm_k"
]
# patch the state dict method
patch_dequantization_on_save(transformer)
quantization_type = get_qtype(self.model_config.qtype)
self.print_and_status_update("Quantizing transformer")
quantize(transformer, weights=quantization_type, **quantization_args)
freeze(transformer)
transformer.to(self.device_torch)
else:
transformer.to(self.device_torch, dtype=dtype)
flush()
scheduler = CogView4.get_train_scheduler()
self.print_and_status_update("Loading VAE")
vae = AutoencoderKL.from_pretrained(
base_model_path, subfolder="vae", torch_dtype=dtype)
flush()
self.print_and_status_update("Making pipe")
pipe: CogView4Pipeline = CogView4Pipeline(
scheduler=scheduler,
text_encoder=None,
tokenizer=tokenizer,
vae=vae,
transformer=None,
)
pipe.text_encoder = text_encoder
pipe.transformer = transformer
self.print_and_status_update("Preparing Model")
text_encoder = pipe.text_encoder
tokenizer = pipe.tokenizer
pipe.transformer = pipe.transformer.to(self.device_torch)
flush()
text_encoder.to(self.device_torch)
text_encoder.requires_grad_(False)
text_encoder.eval()
pipe.transformer = pipe.transformer.to(self.device_torch)
flush()
self.pipeline = pipe
self.model = transformer
self.vae = vae
self.text_encoder = text_encoder
self.tokenizer = tokenizer
def get_generation_pipeline(self):
scheduler = CogView4.get_train_scheduler()
pipeline = CogView4Pipeline(
vae=self.vae,
transformer=self.unet,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
scheduler=scheduler,
)
return pipeline
def generate_single_image(
self,
pipeline: CogView4Pipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds.to(
self.device_torch, dtype=self.torch_dtype),
negative_prompt_embeds=unconditional_embeds.text_embeds.to(
self.device_torch, dtype=self.torch_dtype),
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
generator=generator,
**extra
).images[0]
return img
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
**kwargs
):
# target_size = (height, width)
target_size = latent_model_input.shape[-2:]
# multiply by 8
target_size = (target_size[0] * 8, target_size[1] * 8)
crops_coords_top_left = torch.tensor(
[(0, 0)], dtype=self.torch_dtype, device=self.device_torch)
original_size = torch.tensor(
[target_size], dtype=self.torch_dtype, device=self.device_torch)
target_size = original_size.clone()
noise_pred_cond = self.model(
hidden_states=latent_model_input,
encoder_hidden_states=text_embeddings.text_embeds,
timestep=timestep,
original_size=original_size,
target_size=target_size,
crop_coords=crops_coords_top_left,
return_dict=False,
)[0]
return noise_pred_cond
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
prompt_embeds, _ = self.pipeline.encode_prompt(
prompt,
do_classifier_free_guidance=False,
device=self.device_torch,
dtype=self.torch_dtype,
)
return PromptEmbeds(prompt_embeds)
def get_model_has_grad(self):
return self.model.proj_out.weight.requires_grad
def get_te_has_grad(self):
return self.text_encoder.layers[0].mlp.down_proj.weight.requires_grad
def save_model(self, output_path, meta, save_dtype):
# only save the unet
transformer: CogView4Transformer2DModel = unwrap_model(self.model)
transformer.save_pretrained(
save_directory=os.path.join(output_path, 'transformer'),
safe_serialization=True,
)
meta_path = os.path.join(output_path, 'aitk_meta.yaml')
with open(meta_path, 'w') as f:
yaml.dump(meta, f)
def get_loss_target(self, *args, **kwargs):
noise = kwargs.get('noise')
effective_noise = self.effective_noise
batch = kwargs.get('batch')
if batch is None:
raise ValueError("Batch is not provided")
if noise is None:
raise ValueError("Noise is not provided")
# return batch.latents
# return (batch.latents - noise).detach()
return (noise - batch.latents).detach()
# return (batch.latents).detach()
# return (effective_noise - batch.latents).detach()
def _get_low_res_latents(self, latents):
# todo prevent needing to do this and grab the tensor another way.
with torch.no_grad():
# Decode latents to image space
images = self.decode_latents(
latents, device=latents.device, dtype=latents.dtype)
# Downsample by a factor of 2 using bilinear interpolation
B, C, H, W = images.shape
low_res_images = torch.nn.functional.interpolate(
images,
size=(H // 2, W // 2),
mode="bilinear",
align_corners=False
)
# Upsample back to original resolution to match expected VAE input dimensions
upsampled_low_res_images = torch.nn.functional.interpolate(
low_res_images,
size=(H, W),
mode="bilinear",
align_corners=False
)
# Encode the low-resolution images back to latent space
low_res_latents = self.encode_images(
upsampled_low_res_images, device=latents.device, dtype=latents.dtype)
return low_res_latents
# def add_noise(
# self,
# original_samples: torch.FloatTensor,
# noise: torch.FloatTensor,
# timesteps: torch.IntTensor,
# **kwargs,
# ) -> torch.FloatTensor:
# relay_start_point = 500
# # Store original samples for loss calculation
# self.original_samples = original_samples
# # Prepare chunks for batch processing
# original_samples_chunks = torch.chunk(
# original_samples, original_samples.shape[0], dim=0)
# noise_chunks = torch.chunk(noise, noise.shape[0], dim=0)
# timesteps_chunks = torch.chunk(timesteps, timesteps.shape[0], dim=0)
# # Get the low res latents only if needed
# low_res_latents_chunks = None
# # Handle case where timesteps is a single value for all samples
# if len(timesteps_chunks) == 1 and len(timesteps_chunks) != len(original_samples_chunks):
# timesteps_chunks = [timesteps_chunks[0]] * len(original_samples_chunks)
# noisy_latents_chunks = []
# effective_noise_chunks = [] # Store the effective noise for each sample
# for idx in range(original_samples.shape[0]):
# t = timesteps_chunks[idx]
# t_01 = (t / 1000).to(original_samples_chunks[idx].device)
# # Flowmatching interpolation between original and noise
# if t > relay_start_point:
# # Standard flowmatching - direct linear interpolation
# noisy_latents = (1 - t_01) * original_samples_chunks[idx] + t_01 * noise_chunks[idx]
# effective_noise_chunks.append(noise_chunks[idx]) # Effective noise is just the noise
# else:
# # Relay flowmatching case - only compute low_res_latents if needed
# if low_res_latents_chunks is None:
# low_res_latents = self._get_low_res_latents(original_samples)
# low_res_latents_chunks = torch.chunk(low_res_latents, low_res_latents.shape[0], dim=0)
# # Calculate the relay ratio (0 to 1)
# t_ratio = t.float() / relay_start_point
# t_ratio = torch.clamp(t_ratio, 0.0, 1.0)
# # First blend between original and low-res based on t_ratio
# z0_t = (1 - t_ratio) * original_samples_chunks[idx] + t_ratio * low_res_latents_chunks[idx]
# added_lor_res_noise = z0_t - original_samples_chunks[idx]
# # Then apply flowmatching interpolation between this blended state and noise
# noisy_latents = (1 - t_01) * z0_t + t_01 * noise_chunks[idx]
# # For prediction target, we need to store the effective "source"
# effective_noise_chunks.append(noise_chunks[idx] + added_lor_res_noise)
# noisy_latents_chunks.append(noisy_latents)
# noisy_latents = torch.cat(noisy_latents_chunks, dim=0)
# self.effective_noise = torch.cat(effective_noise_chunks, dim=0) # Store for loss calculation
# return noisy_latents
# def add_noise(
# self,
# original_samples: torch.FloatTensor,
# noise: torch.FloatTensor,
# timesteps: torch.IntTensor,
# **kwargs,
# ) -> torch.FloatTensor:
# relay_start_point = 500
# # Store original samples for loss calculation
# self.original_samples = original_samples
# # Prepare chunks for batch processing
# original_samples_chunks = torch.chunk(
# original_samples, original_samples.shape[0], dim=0)
# noise_chunks = torch.chunk(noise, noise.shape[0], dim=0)
# timesteps_chunks = torch.chunk(timesteps, timesteps.shape[0], dim=0)
# # Get the low res latents only if needed
# low_res_latents = self._get_low_res_latents(original_samples)
# low_res_latents_chunks = torch.chunk(low_res_latents, low_res_latents.shape[0], dim=0)
# # Handle case where timesteps is a single value for all samples
# if len(timesteps_chunks) == 1 and len(timesteps_chunks) != len(original_samples_chunks):
# timesteps_chunks = [timesteps_chunks[0]] * len(original_samples_chunks)
# noisy_latents_chunks = []
# effective_noise_chunks = [] # Store the effective noise for each sample
# for idx in range(original_samples.shape[0]):
# t = timesteps_chunks[idx]
# t_01 = (t / 1000).to(original_samples_chunks[idx].device)
# lrln = low_res_latents_chunks[idx] - original_samples_chunks[idx]
# # lrln = lrln * (1 - t_01)
# # make the noise an interpolation between noise and low_res_latents with
# # being noise at t_01=1 and low_res_latents at t_01=0
# new_noise = t_01 * noise_chunks[idx] + (1 - t_01) * lrln
# # new_noise = noise_chunks[idx] + lrln
# # new_noise = noise_chunks[idx] + lrln
# # Then apply flowmatching interpolation between this blended state and noise
# noisy_latents = (1 - t_01) * original_samples + t_01 * new_noise
# # For prediction target, we need to store the effective "source"
# effective_noise_chunks.append(new_noise)
# noisy_latents_chunks.append(noisy_latents)
# noisy_latents = torch.cat(noisy_latents_chunks, dim=0)
# self.effective_noise = torch.cat(effective_noise_chunks, dim=0) # Store for loss calculation
# return noisy_latents
|