Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Cache the model and tokenizer | |
def load_model_and_tokenizer(): | |
model_name = "rajrakeshdr/IntelliSoc" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
return model, tokenizer | |
# Load the model and tokenizer | |
model, tokenizer = load_model_and_tokenizer() | |
# Streamlit app title | |
st.title("IntelliSoc Text Generation") | |
# Input prompt | |
prompt = st.text_area("Enter your prompt:", "Once upon a time") | |
# Generate text on button click | |
if st.button("Generate Text"): | |
# Tokenize input | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) | |
# Generate text | |
outputs = model.generate( | |
inputs.input_ids, | |
max_length=100, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
top_k=50, | |
top_p=0.95, | |
temperature=0.7 | |
) | |
# Decode the generated text | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Display the generated text | |
st.write("Generated Text:") | |
st.write(generated_text) |