File size: 1,193 Bytes
ca272d0
 
3d37119
 
 
 
 
209d107
3d37119
 
 
ca272d0
3d37119
ca272d0
 
 
 
 
 
 
 
 
 
 
 
 
209d107
 
 
 
 
 
 
 
 
ca272d0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer

# Cache the model and tokenizer
@st.cache_resource
def load_model_and_tokenizer():
    model_name = "rajrakeshdr/IntelliSoc"
    model = AutoModelForCausalLM.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    return model, tokenizer

# Load the model and tokenizer
model, tokenizer = load_model_and_tokenizer()

# Streamlit app title
st.title("IntelliSoc Text Generation")

# Input prompt
prompt = st.text_area("Enter your prompt:", "Once upon a time")

# Generate text on button click
if st.button("Generate Text"):
    # Tokenize input
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
    
    # Generate text
    outputs = model.generate(
        inputs.input_ids,
        max_length=100,
        num_return_sequences=1,
        no_repeat_ngram_size=2,
        top_k=50,
        top_p=0.95,
        temperature=0.7
    )
    
    # Decode the generated text
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Display the generated text
    st.write("Generated Text:")
    st.write(generated_text)