rajrakeshdr commited on
Commit
3d37119
·
verified ·
1 Parent(s): ca272d0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -7
app.py CHANGED
@@ -2,10 +2,20 @@ import streamlit as st
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  # Load the model and tokenizer
6
- model_name = "rajrakeshdr/IntelliSoc"
7
- tokenizer = AutoTokenizer.from_pretrained(model_name)
8
- model = AutoModelForCausalLM.from_pretrained(model_name)
9
 
10
  # Streamlit app title
11
  st.title("IntelliSoc Text Generation")
@@ -13,9 +23,6 @@ st.title("IntelliSoc Text Generation")
13
  # Input prompt
14
  prompt = st.text_area("Enter your prompt:", "Once upon a time")
15
 
16
- # Slider for max length
17
- max_length = st.slider("Max length of generated text", 50, 200, 100)
18
-
19
  # Generate text on button click
20
  if st.button("Generate Text"):
21
  # Tokenize input
@@ -25,7 +32,7 @@ if st.button("Generate Text"):
25
  with torch.no_grad():
26
  outputs = model.generate(
27
  inputs.input_ids,
28
- max_length=max_length,
29
  num_return_sequences=1,
30
  no_repeat_ngram_size=2,
31
  top_k=50,
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
 
5
+ # Disable safetensors fast GPU loading (if needed)
6
+ import os
7
+ os.environ["SAFETENSORS_FAST_GPU"] = "0"
8
+
9
+ # Cache the model and tokenizer
10
+ @st.cache_resource
11
+ def load_model_and_tokenizer():
12
+ model_name = "rajrakeshdr/IntelliSoc"
13
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
14
+ model = AutoModelForCausalLM.from_pretrained(model_name, use_safetensors=False)
15
+ return model, tokenizer
16
+
17
  # Load the model and tokenizer
18
+ model, tokenizer = load_model_and_tokenizer()
 
 
19
 
20
  # Streamlit app title
21
  st.title("IntelliSoc Text Generation")
 
23
  # Input prompt
24
  prompt = st.text_area("Enter your prompt:", "Once upon a time")
25
 
 
 
 
26
  # Generate text on button click
27
  if st.button("Generate Text"):
28
  # Tokenize input
 
32
  with torch.no_grad():
33
  outputs = model.generate(
34
  inputs.input_ids,
35
+ max_length=100,
36
  num_return_sequences=1,
37
  no_repeat_ngram_size=2,
38
  top_k=50,