File size: 2,194 Bytes
b77a775
 
6273efa
b77a775
6273efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import streamlit as st
from datasets import load_dataset
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration

# Load a multilingual dataset (xnli or tydi_qa)
def load_data():
    try:
        # Load the 'xnli' dataset, validation split
        dataset = load_dataset("xnli", split="validation")  
        st.write(f"Loaded {len(dataset)} examples from the 'validation' split.")
        return dataset
    except Exception as e:
        st.write(f"Error loading 'xnli' dataset: {e}")
        return None

# Initialize RAG model components
def initialize_rag():
    try:
        # Initialize tokenizer and retriever
        tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
        retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="compressed", passages_path="./path_to_data")
        model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
        return tokenizer, retriever, model
    except Exception as e:
        st.write(f"Error initializing RAG components: {e}")
        return None, None, None

# Main function to run the app
def main():
    st.title("Multilingual RAG Translator/Answer Bot")
    
    # Load the dataset
    dataset = load_data()
    if dataset is None:
        st.write("Dataset could not be loaded.")
        return

    # Initialize RAG model components
    tokenizer, retriever, model = initialize_rag()
    if tokenizer is None or retriever is None or model is None:
        st.write("RAG components could not be initialized.")
        return

    # UI to input a query
    query = st.text_input("Enter your question in Urdu, Hindi, or French:")
    
    if query:
        # Tokenize the input query
        inputs = tokenizer(query, return_tensors="pt")

        # Retrieve relevant documents
        retrieved_docs = retriever.retrieve(query)
        # Generate an answer using the model
        generated = model.generate(input_ids=inputs['input_ids'], context_input_ids=retrieved_docs['input_ids'])
        answer = tokenizer.decode(generated[0], skip_special_tokens=True)

        st.write("Answer:", answer)

# Run the Streamlit app
if __name__ == "__main__":
    main()