Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
+
from datasets import load_dataset
|
4 |
+
from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification
|
5 |
+
|
6 |
+
# Load the XNLI dataset (Multilingual NLI dataset) for demonstration
|
7 |
+
dataset = load_dataset("xnli", split="validation")
|
8 |
+
|
9 |
+
# Initialize tokenizer and retriever for multilingual support (using XLM-Roberta)
|
10 |
+
tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base")
|
11 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="compressed", passages_path="./path_to_multilingual_dataset")
|
12 |
+
|
13 |
+
# Initialize the RAG model
|
14 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
15 |
+
|
16 |
+
# Define Streamlit app
|
17 |
+
st.title('Multilingual RAG Translator/Answer Bot')
|
18 |
+
|
19 |
+
st.markdown("This app uses a multilingual RAG model to answer your questions in the language of the query. Ask questions in languages like Urdu, Hindi, or French!")
|
20 |
+
|
21 |
+
# User input for query
|
22 |
+
user_query = st.text_input("Ask a question in Urdu, Hindi, or French:")
|
23 |
+
|
24 |
+
if user_query:
|
25 |
+
# Tokenize the input question
|
26 |
+
inputs = tokenizer(user_query, return_tensors="pt", padding=True, truncation=True)
|
27 |
+
input_ids = inputs['input_ids']
|
28 |
+
|
29 |
+
# Use the retriever to get relevant context
|
30 |
+
retrieved_docs = retriever.retrieve(input_ids)
|
31 |
+
|
32 |
+
# Generate an answer using the context
|
33 |
+
generated_ids = model.generate(input_ids, context_input_ids=retrieved_docs)
|
34 |
+
answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
35 |
+
|
36 |
+
# Display the answer
|
37 |
+
st.write(f"Answer: {answer}")
|
38 |
+
|
39 |
+
# Display the most relevant documents
|
40 |
+
st.subheader("Relevant Documents:")
|
41 |
+
for doc in retrieved_docs:
|
42 |
+
st.write(doc['text'][:300] + '...') # Display first 300 characters of each doc
|