Create qa_chatbot.py
Browse files- qa_chatbot.py +43 -0
qa_chatbot.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain import RetrievalQA
|
2 |
+
from langchain_openai import OpenAI
|
3 |
+
from langchain_chroma import Chroma
|
4 |
+
|
5 |
+
def create_chatbot(vector_store):
|
6 |
+
"""
|
7 |
+
Creates a chatbot for querying the Chroma vector store.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
vector_store (Chroma): The vector store to use.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
RetrievalQA: The QA chatbot object.
|
14 |
+
"""
|
15 |
+
llm = OpenAI(temperature=0.5)
|
16 |
+
retriever = vector_store.as_retriever(search_type="mmr", k=3)
|
17 |
+
|
18 |
+
qa = RetrievalQA.from_chain_type(
|
19 |
+
llm=llm,
|
20 |
+
chain_type="stuff",
|
21 |
+
retriever=retriever,
|
22 |
+
return_source_documents=True
|
23 |
+
)
|
24 |
+
return qa
|
25 |
+
|
26 |
+
|
27 |
+
def ask_question(qa, query):
|
28 |
+
"""
|
29 |
+
Asks a question to the chatbot and returns the response.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
qa (RetrievalQA): The QA chatbot object.
|
33 |
+
query (str): The question to ask.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
str: The answer from the chatbot.
|
37 |
+
"""
|
38 |
+
try:
|
39 |
+
response = qa.invoke({"query": query})
|
40 |
+
answer = response.get('result', 'No answer found.')
|
41 |
+
return f"Answer: {answer}\n"
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error: {e}"
|