Create embedding_storage.py
Browse files- embedding_storage.py +29 -0
embedding_storage.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import OpenAIEmbeddings
|
2 |
+
from langchain_chroma import Chroma
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.docstore.document import Document
|
5 |
+
import os
|
6 |
+
|
7 |
+
from config import PERSIST_DIRECTORY
|
8 |
+
|
9 |
+
def process_safety_with_chroma(text):
|
10 |
+
"""
|
11 |
+
Processes and stores the given text into ChromaDB.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
text (str): Text to be embedded and stored.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
Chroma: The Chroma vector store object.
|
18 |
+
"""
|
19 |
+
if os.path.exists(PERSIST_DIRECTORY):
|
20 |
+
vector_store = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=OpenAIEmbeddings())
|
21 |
+
else:
|
22 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
|
23 |
+
text_chunks = text_splitter.split_text(text)
|
24 |
+
documents = [Document(page_content=chunk, metadata={"source": f"chunk_{i}"}) for i, chunk in enumerate(text_chunks)]
|
25 |
+
|
26 |
+
embeddings = OpenAIEmbeddings()
|
27 |
+
vector_store = Chroma.from_documents(documents, embeddings, persist_directory=PERSIST_DIRECTORY)
|
28 |
+
|
29 |
+
return vector_store
|