llm-studio / llm_studio /python_configs /text_dpo_modeling_config.py
qinfeng722's picture
Upload 322 files
5caedb4 verified
import os
from dataclasses import dataclass, field
from typing import Any
import llm_studio.src.datasets.text_dpo_modeling_ds
from llm_studio.app_utils.config import default_cfg
from llm_studio.python_configs.base import DefaultConfigProblemBase
from llm_studio.python_configs.text_causal_language_modeling_config import (
ConfigNLPAugmentation,
ConfigNLPCausalLMArchitecture,
ConfigNLPCausalLMDataset,
ConfigNLPCausalLMEnvironment,
ConfigNLPCausalLMLogging,
ConfigNLPCausalLMPrediction,
ConfigNLPCausalLMTokenizer,
ConfigNLPCausalLMTraining,
)
from llm_studio.src import possible_values
from llm_studio.src.losses import text_dpo_modeling_losses
from llm_studio.src.models import text_dpo_modeling_model
from llm_studio.src.nesting import Dependency
from llm_studio.src.plots import text_dpo_modeling_plots
from llm_studio.src.utils.modeling_utils import generate_experiment_name
@dataclass
class ConfigDPODataset(ConfigNLPCausalLMDataset):
dataset_class: Any = llm_studio.src.datasets.text_dpo_modeling_ds.CustomDataset
# Always have full chat history.
# Chosen/Rejected prompt are only at the end of a conversation.
limit_chained_samples: bool = True
rejected_prompt_column: str = "None"
answer_column: str = "chosen_response"
rejected_answer_column: str = "rejected_response"
def __post_init__(self):
super().__post_init__()
self._possible_values["rejected_prompt_column"] = possible_values.Columns(
prefer_with=lambda column: column
in (
"rejected_input",
"rejected_prompt",
"rejected_instruction",
"rejected_question",
),
add_none=True,
)
self._possible_values["rejected_answer_column"] = possible_values.Columns(
prefer_with=lambda column: column
in (
"rejected_answer",
"rejected_response",
"rejected",
)
)
self._visibility["limit_chained_samples"] = -1
self._visibility["mask_prompt_labels"] = -1
self._order.insert("rejected_prompt_column", after="prompt_column")
self._order.insert("rejected_answer_column", after="answer_column")
@dataclass
class ConfigDPOTraining(ConfigNLPCausalLMTraining):
learning_rate: float = 1e-4 # relatively high as we use LORA
beta: float = 0.2
simpo_gamma: float = 1.0
gradient_clip: float = 10.0
loss_class: Any = text_dpo_modeling_losses.Losses
loss_function: str = "DPOLoss"
optimizer: str = "AdamW"
# Needs to be enabled as we need logits from original model, see forward pass
lora: bool = True
def __post_init__(self):
super().__post_init__()
self._possible_values["beta"] = possible_values.Number(0.05, 1.0, 0.05)
self._possible_values["simpo_gamma"] = possible_values.Number(0.05, 2.0, 0.05)
self._grid_search_values["loss_function"] = None
self._grid_search_values["beta"] = (0.1, 0.15, 0.20, 0.25, 0.4, 0.5)
self._grid_search_values["simpo_gamma"] = (0.5, 0.75, 1, 1.25, 1.5, 1.75, 2)
self._grid_search_iscustom["beta"] = True
self._grid_search_iscustom["simpo_gamma"] = True
self._nesting.add(
["simpo_gamma"],
[Dependency(key="loss_function", value="SimPOLoss", is_set=True)],
)
self._order.insert("beta", after="learning_rate")
self._order.insert("simpo_gamma", after="beta")
@dataclass
class ConfigDPOArchitecture(ConfigNLPCausalLMArchitecture):
model_class: Any = text_dpo_modeling_model.Model
@dataclass
class ConfigDPOPLogging(ConfigNLPCausalLMLogging):
plots_class: Any = text_dpo_modeling_plots.Plots
@dataclass
class ConfigProblemBase(DefaultConfigProblemBase):
output_directory: str = f"output/{os.path.basename(__file__).split('.')[0]}"
experiment_name: str = field(default_factory=generate_experiment_name)
llm_backbone: str = (
"h2oai/h2o-danube3-500m-chat"
if "h2oai/h2o-danube3-500m-chat" in default_cfg.default_causal_language_models
else default_cfg.default_causal_language_models[0]
)
dataset: ConfigDPODataset = field(default_factory=ConfigDPODataset)
tokenizer: ConfigNLPCausalLMTokenizer = field(
default_factory=ConfigNLPCausalLMTokenizer
)
architecture: ConfigDPOArchitecture = field(default_factory=ConfigDPOArchitecture)
training: ConfigDPOTraining = field(default_factory=ConfigDPOTraining)
augmentation: ConfigNLPAugmentation = field(default_factory=ConfigNLPAugmentation)
prediction: ConfigNLPCausalLMPrediction = field(
default_factory=ConfigNLPCausalLMPrediction
)
environment: ConfigNLPCausalLMEnvironment = field(
default_factory=ConfigNLPCausalLMEnvironment
)
logging: ConfigDPOPLogging = field(default_factory=ConfigDPOPLogging)
def __post_init__(self):
super().__post_init__()
self._visibility["output_directory"] = -1
self._possible_values["llm_backbone"] = possible_values.String(
values=default_cfg.default_causal_language_models,
allow_custom=True,
)