Spaces:
Sleeping
Sleeping
import os | |
from dataclasses import dataclass, field | |
from typing import Any | |
import llm_studio.src.datasets.text_dpo_modeling_ds | |
from llm_studio.app_utils.config import default_cfg | |
from llm_studio.python_configs.base import DefaultConfigProblemBase | |
from llm_studio.python_configs.text_causal_language_modeling_config import ( | |
ConfigNLPAugmentation, | |
ConfigNLPCausalLMArchitecture, | |
ConfigNLPCausalLMDataset, | |
ConfigNLPCausalLMEnvironment, | |
ConfigNLPCausalLMLogging, | |
ConfigNLPCausalLMPrediction, | |
ConfigNLPCausalLMTokenizer, | |
ConfigNLPCausalLMTraining, | |
) | |
from llm_studio.src import possible_values | |
from llm_studio.src.losses import text_dpo_modeling_losses | |
from llm_studio.src.models import text_dpo_modeling_model | |
from llm_studio.src.nesting import Dependency | |
from llm_studio.src.plots import text_dpo_modeling_plots | |
from llm_studio.src.utils.modeling_utils import generate_experiment_name | |
class ConfigDPODataset(ConfigNLPCausalLMDataset): | |
dataset_class: Any = llm_studio.src.datasets.text_dpo_modeling_ds.CustomDataset | |
# Always have full chat history. | |
# Chosen/Rejected prompt are only at the end of a conversation. | |
limit_chained_samples: bool = True | |
rejected_prompt_column: str = "None" | |
answer_column: str = "chosen_response" | |
rejected_answer_column: str = "rejected_response" | |
def __post_init__(self): | |
super().__post_init__() | |
self._possible_values["rejected_prompt_column"] = possible_values.Columns( | |
prefer_with=lambda column: column | |
in ( | |
"rejected_input", | |
"rejected_prompt", | |
"rejected_instruction", | |
"rejected_question", | |
), | |
add_none=True, | |
) | |
self._possible_values["rejected_answer_column"] = possible_values.Columns( | |
prefer_with=lambda column: column | |
in ( | |
"rejected_answer", | |
"rejected_response", | |
"rejected", | |
) | |
) | |
self._visibility["limit_chained_samples"] = -1 | |
self._visibility["mask_prompt_labels"] = -1 | |
self._order.insert("rejected_prompt_column", after="prompt_column") | |
self._order.insert("rejected_answer_column", after="answer_column") | |
class ConfigDPOTraining(ConfigNLPCausalLMTraining): | |
learning_rate: float = 1e-4 # relatively high as we use LORA | |
beta: float = 0.2 | |
simpo_gamma: float = 1.0 | |
gradient_clip: float = 10.0 | |
loss_class: Any = text_dpo_modeling_losses.Losses | |
loss_function: str = "DPOLoss" | |
optimizer: str = "AdamW" | |
# Needs to be enabled as we need logits from original model, see forward pass | |
lora: bool = True | |
def __post_init__(self): | |
super().__post_init__() | |
self._possible_values["beta"] = possible_values.Number(0.05, 1.0, 0.05) | |
self._possible_values["simpo_gamma"] = possible_values.Number(0.05, 2.0, 0.05) | |
self._grid_search_values["loss_function"] = None | |
self._grid_search_values["beta"] = (0.1, 0.15, 0.20, 0.25, 0.4, 0.5) | |
self._grid_search_values["simpo_gamma"] = (0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) | |
self._grid_search_iscustom["beta"] = True | |
self._grid_search_iscustom["simpo_gamma"] = True | |
self._nesting.add( | |
["simpo_gamma"], | |
[Dependency(key="loss_function", value="SimPOLoss", is_set=True)], | |
) | |
self._order.insert("beta", after="learning_rate") | |
self._order.insert("simpo_gamma", after="beta") | |
class ConfigDPOArchitecture(ConfigNLPCausalLMArchitecture): | |
model_class: Any = text_dpo_modeling_model.Model | |
class ConfigDPOPLogging(ConfigNLPCausalLMLogging): | |
plots_class: Any = text_dpo_modeling_plots.Plots | |
class ConfigProblemBase(DefaultConfigProblemBase): | |
output_directory: str = f"output/{os.path.basename(__file__).split('.')[0]}" | |
experiment_name: str = field(default_factory=generate_experiment_name) | |
llm_backbone: str = ( | |
"h2oai/h2o-danube3-500m-chat" | |
if "h2oai/h2o-danube3-500m-chat" in default_cfg.default_causal_language_models | |
else default_cfg.default_causal_language_models[0] | |
) | |
dataset: ConfigDPODataset = field(default_factory=ConfigDPODataset) | |
tokenizer: ConfigNLPCausalLMTokenizer = field( | |
default_factory=ConfigNLPCausalLMTokenizer | |
) | |
architecture: ConfigDPOArchitecture = field(default_factory=ConfigDPOArchitecture) | |
training: ConfigDPOTraining = field(default_factory=ConfigDPOTraining) | |
augmentation: ConfigNLPAugmentation = field(default_factory=ConfigNLPAugmentation) | |
prediction: ConfigNLPCausalLMPrediction = field( | |
default_factory=ConfigNLPCausalLMPrediction | |
) | |
environment: ConfigNLPCausalLMEnvironment = field( | |
default_factory=ConfigNLPCausalLMEnvironment | |
) | |
logging: ConfigDPOPLogging = field(default_factory=ConfigDPOPLogging) | |
def __post_init__(self): | |
super().__post_init__() | |
self._visibility["output_directory"] = -1 | |
self._possible_values["llm_backbone"] = possible_values.String( | |
values=default_cfg.default_causal_language_models, | |
allow_custom=True, | |
) | |