import os from dataclasses import dataclass, field from typing import Any import llm_studio.src.datasets.text_dpo_modeling_ds from llm_studio.app_utils.config import default_cfg from llm_studio.python_configs.base import DefaultConfigProblemBase from llm_studio.python_configs.text_causal_language_modeling_config import ( ConfigNLPAugmentation, ConfigNLPCausalLMArchitecture, ConfigNLPCausalLMDataset, ConfigNLPCausalLMEnvironment, ConfigNLPCausalLMLogging, ConfigNLPCausalLMPrediction, ConfigNLPCausalLMTokenizer, ConfigNLPCausalLMTraining, ) from llm_studio.src import possible_values from llm_studio.src.losses import text_dpo_modeling_losses from llm_studio.src.models import text_dpo_modeling_model from llm_studio.src.nesting import Dependency from llm_studio.src.plots import text_dpo_modeling_plots from llm_studio.src.utils.modeling_utils import generate_experiment_name @dataclass class ConfigDPODataset(ConfigNLPCausalLMDataset): dataset_class: Any = llm_studio.src.datasets.text_dpo_modeling_ds.CustomDataset # Always have full chat history. # Chosen/Rejected prompt are only at the end of a conversation. limit_chained_samples: bool = True rejected_prompt_column: str = "None" answer_column: str = "chosen_response" rejected_answer_column: str = "rejected_response" def __post_init__(self): super().__post_init__() self._possible_values["rejected_prompt_column"] = possible_values.Columns( prefer_with=lambda column: column in ( "rejected_input", "rejected_prompt", "rejected_instruction", "rejected_question", ), add_none=True, ) self._possible_values["rejected_answer_column"] = possible_values.Columns( prefer_with=lambda column: column in ( "rejected_answer", "rejected_response", "rejected", ) ) self._visibility["limit_chained_samples"] = -1 self._visibility["mask_prompt_labels"] = -1 self._order.insert("rejected_prompt_column", after="prompt_column") self._order.insert("rejected_answer_column", after="answer_column") @dataclass class ConfigDPOTraining(ConfigNLPCausalLMTraining): learning_rate: float = 1e-4 # relatively high as we use LORA beta: float = 0.2 simpo_gamma: float = 1.0 gradient_clip: float = 10.0 loss_class: Any = text_dpo_modeling_losses.Losses loss_function: str = "DPOLoss" optimizer: str = "AdamW" # Needs to be enabled as we need logits from original model, see forward pass lora: bool = True def __post_init__(self): super().__post_init__() self._possible_values["beta"] = possible_values.Number(0.05, 1.0, 0.05) self._possible_values["simpo_gamma"] = possible_values.Number(0.05, 2.0, 0.05) self._grid_search_values["loss_function"] = None self._grid_search_values["beta"] = (0.1, 0.15, 0.20, 0.25, 0.4, 0.5) self._grid_search_values["simpo_gamma"] = (0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) self._grid_search_iscustom["beta"] = True self._grid_search_iscustom["simpo_gamma"] = True self._nesting.add( ["simpo_gamma"], [Dependency(key="loss_function", value="SimPOLoss", is_set=True)], ) self._order.insert("beta", after="learning_rate") self._order.insert("simpo_gamma", after="beta") @dataclass class ConfigDPOArchitecture(ConfigNLPCausalLMArchitecture): model_class: Any = text_dpo_modeling_model.Model @dataclass class ConfigDPOPLogging(ConfigNLPCausalLMLogging): plots_class: Any = text_dpo_modeling_plots.Plots @dataclass class ConfigProblemBase(DefaultConfigProblemBase): output_directory: str = f"output/{os.path.basename(__file__).split('.')[0]}" experiment_name: str = field(default_factory=generate_experiment_name) llm_backbone: str = ( "h2oai/h2o-danube3-500m-chat" if "h2oai/h2o-danube3-500m-chat" in default_cfg.default_causal_language_models else default_cfg.default_causal_language_models[0] ) dataset: ConfigDPODataset = field(default_factory=ConfigDPODataset) tokenizer: ConfigNLPCausalLMTokenizer = field( default_factory=ConfigNLPCausalLMTokenizer ) architecture: ConfigDPOArchitecture = field(default_factory=ConfigDPOArchitecture) training: ConfigDPOTraining = field(default_factory=ConfigDPOTraining) augmentation: ConfigNLPAugmentation = field(default_factory=ConfigNLPAugmentation) prediction: ConfigNLPCausalLMPrediction = field( default_factory=ConfigNLPCausalLMPrediction ) environment: ConfigNLPCausalLMEnvironment = field( default_factory=ConfigNLPCausalLMEnvironment ) logging: ConfigDPOPLogging = field(default_factory=ConfigDPOPLogging) def __post_init__(self): super().__post_init__() self._visibility["output_directory"] = -1 self._possible_values["llm_backbone"] = possible_values.String( values=default_cfg.default_causal_language_models, allow_custom=True, )