Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import requests | |
from bs4 import BeautifulSoup | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import pipeline | |
class URLValidator: | |
""" | |
A production-ready URL validation class that evaluates the credibility of a webpage | |
using multiple factors: domain trust, content relevance, fact-checking, bias detection, citations, and security. | |
""" | |
def __init__(self): | |
# API Keys | |
self.serpapi_key = os.getenv('SERPAPI_KEY') | |
self.google_safe_browsing_key = os.getenv('GOOGLE_SAFE_KEY') | |
# Load models once to avoid redundant API calls | |
self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') | |
self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection") | |
self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment") | |
def fetch_page_content(self, url: str) -> str: | |
""" Fetches and extracts text content from the given URL. """ | |
try: | |
response = requests.get(url, timeout=10) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.text, "html.parser") | |
return " ".join([p.text for p in soup.find_all("p")]) # Extract paragraph text | |
except requests.RequestException: | |
return "" # Fail gracefully by returning an empty string | |
def get_domain_trust(self, url: str, content: str) -> int: | |
""" Computes the domain trust score based on available data sources. """ | |
trust_scores = [] | |
# Hugging Face Fake News Detector | |
if content: | |
try: | |
trust_scores.append(self.get_domain_trust_huggingface(content)) | |
except: | |
pass | |
# Compute final score (average of available scores) | |
return int(sum(trust_scores) / len(trust_scores)) if trust_scores else 50 | |
def get_domain_trust_huggingface(self, content: str) -> int: | |
""" Uses a Hugging Face fake news detection model to assess credibility. """ | |
if not content: | |
return 50 # Default score if no content available | |
result = self.fake_news_classifier(content[:512])[0] # Process only first 512 characters | |
return 100 if result["label"] == "REAL" else 30 if result["label"] == "FAKE" else 50 | |
def compute_similarity_score(self, user_query: str, content: str) -> int: | |
""" Computes semantic similarity between user query and page content. """ | |
if not content: | |
return 0 | |
return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100) | |
def check_facts(self, content: str) -> int: | |
""" Cross-checks extracted content with Google Fact Check API. """ | |
if not content: | |
return 50 | |
api_url = f"https://toolbox.google.com/factcheck/api/v1/claimsearch?query={content[:200]}" | |
try: | |
response = requests.get(api_url) | |
data = response.json() | |
return 80 if "claims" in data and data["claims"] else 40 | |
except: | |
return 50 # Default uncertainty score | |
def check_google_scholar(self, url: str) -> int: | |
""" Checks Google Scholar citations using SerpAPI. """ | |
serpapi_key = self.serpapi_key | |
params = {"q": url, "engine": "google_scholar", "api_key": serpapi_key} | |
try: | |
response = requests.get("https://serpapi.com/search", params=params) | |
data = response.json() | |
return min(len(data.get("organic_results", [])) * 10, 100) # Normalize | |
except: | |
return 0 # Default to no citations | |
def detect_bias(self, content: str) -> int: | |
""" Uses NLP sentiment analysis to detect potential bias in content. """ | |
if not content: | |
return 50 | |
sentiment_result = self.sentiment_analyzer(content[:512])[0] | |
return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30 | |
def get_star_rating(self, score: float) -> tuple: | |
""" Converts a score (0-100) into a 1-5 star rating. """ | |
stars = max(1, min(5, round(score / 20))) # Normalize 100-scale to 5-star scale | |
return stars, "⭐" * stars | |
def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, citation_score, safe_browsing_score, final_score) -> str: | |
""" Generates a human-readable explanation for the score. """ | |
reasons = [] | |
if domain_trust < 50: | |
reasons.append("The source has low domain authority.") | |
else: | |
reasons.append("The source has high domain authority.") | |
if similarity_score < 50: | |
reasons.append("The content is not highly relevant to your query.") | |
else: | |
reasons.append("The content is highly relevant to your query.") | |
if fact_check_score < 50: | |
reasons.append("Limited fact-checking verification found.") | |
else: | |
reasons.append("High level of fact-checking verification found.") | |
if bias_score < 50: | |
reasons.append("Potential bias detected in the content.") | |
else: | |
reasons.append("No bias detected in the content.") | |
if citation_score < 30: | |
reasons.append("Few citations found for this content.") | |
else: | |
reasons.append("High level of citations found for this content.") | |
if safe_browsing_score < 50: | |
reasons.append("No malicious content detected.") | |
else: | |
reasons.append("Possible malicious content detected.") | |
return " ".join(reasons) if reasons else "This source is highly credible and relevant." | |
def check_google_safe_browsing(self, url: str) -> int: | |
""" | |
Uses Google Safe Browsing API to check if a URL is malicious. | |
Returns: | |
- 100 if safe | |
- 30 if flagged as potentially harmful | |
- 10 if confirmed malicious | |
""" | |
api_url = f"https://safebrowsing.googleapis.com/v4/threatMatches:find?key={self.google_safe_browsing_key}" | |
payload = { | |
"client": { | |
"clientId": "your-app", | |
"clientVersion": "1.0" | |
}, | |
"threatInfo": { | |
"threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"], | |
"platformTypes": ["ANY_PLATFORM"], | |
"threatEntryTypes": ["URL"], | |
"threatEntries": [{"url": url}] | |
} | |
} | |
try: | |
response = requests.post(api_url, json=payload) | |
data = response.json() | |
if "matches" in data: | |
return 10 # Malicious URL detected | |
return 100 # Safe URL | |
except: | |
return 50 # Default score if API request fails | |
def rate_url_validity(self, user_query: str, url: str) -> dict: | |
""" Main function to evaluate the validity of a webpage. """ | |
content = self.fetch_page_content(url) | |
domain_trust = self.get_domain_trust(url, content) | |
similarity_score = self.compute_similarity_score(user_query, content) | |
fact_check_score = self.check_facts(content) | |
bias_score = self.detect_bias(content) | |
citation_score = self.check_google_scholar(url) | |
safe_browsing_score = self.check_google_safe_browsing(url) | |
final_score = ( | |
(0.30 * domain_trust) + | |
(0.30 * similarity_score) + | |
(0.20 * fact_check_score) + | |
(0.10 * bias_score) + | |
(0.10 * citation_score) + | |
(0.05 * safe_browsing_score) | |
) | |
stars, icon = self.get_star_rating(final_score) | |
explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, citation_score, safe_browsing_score, final_score) | |
return { | |
"raw_score": { | |
"Domain Trust": domain_trust, | |
"Content Relevance": similarity_score, | |
"Fact-Check Score": fact_check_score, | |
"Bias Score": bias_score, | |
"Citation Score": citation_score, | |
"Safe Browsing Score": safe_browsing_score, | |
"Final Validity Score": final_score | |
}, | |
"stars": { | |
"score": stars, | |
"icon": icon | |
}, | |
"explanation": explanation | |
} | |
st.title("URL Validator") | |
# Input fields for user prompt and URL | |
user_prompt = st.text_input("Enter your query:", placeholder="e.g., What mods should I use on Volt Prime?") | |
url_to_check = st.text_input("Enter URL to validate:", placeholder="e.g., https://overframe.gg/items/arsenal/61/volt-prime/") | |
# Run validation on button click | |
if st.button("Validate URL"): | |
if user_prompt and url_to_check: | |
validator = URLValidator() | |
result = validator.rate_url_validity(user_prompt, url_to_check) | |
st.subheader("Validation Results") | |
st.json(result) # Display JSON object | |
else: | |
st.warning("Please enter both a query and a URL.") | |