Validate_URL / app.py
pt09490n's picture
Adding code for app.py and updating requirements.txt
4c189f4
import streamlit as st
import os
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline
class URLValidator:
"""
A production-ready URL validation class that evaluates the credibility of a webpage
using multiple factors: domain trust, content relevance, fact-checking, bias detection, citations, and security.
"""
def __init__(self):
# API Keys
self.serpapi_key = os.getenv('SERPAPI_KEY')
self.google_safe_browsing_key = os.getenv('GOOGLE_SAFE_KEY')
# Load models once to avoid redundant API calls
self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
def fetch_page_content(self, url: str) -> str:
""" Fetches and extracts text content from the given URL. """
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
return " ".join([p.text for p in soup.find_all("p")]) # Extract paragraph text
except requests.RequestException:
return "" # Fail gracefully by returning an empty string
def get_domain_trust(self, url: str, content: str) -> int:
""" Computes the domain trust score based on available data sources. """
trust_scores = []
# Hugging Face Fake News Detector
if content:
try:
trust_scores.append(self.get_domain_trust_huggingface(content))
except:
pass
# Compute final score (average of available scores)
return int(sum(trust_scores) / len(trust_scores)) if trust_scores else 50
def get_domain_trust_huggingface(self, content: str) -> int:
""" Uses a Hugging Face fake news detection model to assess credibility. """
if not content:
return 50 # Default score if no content available
result = self.fake_news_classifier(content[:512])[0] # Process only first 512 characters
return 100 if result["label"] == "REAL" else 30 if result["label"] == "FAKE" else 50
def compute_similarity_score(self, user_query: str, content: str) -> int:
""" Computes semantic similarity between user query and page content. """
if not content:
return 0
return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100)
def check_facts(self, content: str) -> int:
""" Cross-checks extracted content with Google Fact Check API. """
if not content:
return 50
api_url = f"https://toolbox.google.com/factcheck/api/v1/claimsearch?query={content[:200]}"
try:
response = requests.get(api_url)
data = response.json()
return 80 if "claims" in data and data["claims"] else 40
except:
return 50 # Default uncertainty score
def check_google_scholar(self, url: str) -> int:
""" Checks Google Scholar citations using SerpAPI. """
serpapi_key = self.serpapi_key
params = {"q": url, "engine": "google_scholar", "api_key": serpapi_key}
try:
response = requests.get("https://serpapi.com/search", params=params)
data = response.json()
return min(len(data.get("organic_results", [])) * 10, 100) # Normalize
except:
return 0 # Default to no citations
def detect_bias(self, content: str) -> int:
""" Uses NLP sentiment analysis to detect potential bias in content. """
if not content:
return 50
sentiment_result = self.sentiment_analyzer(content[:512])[0]
return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30
def get_star_rating(self, score: float) -> tuple:
""" Converts a score (0-100) into a 1-5 star rating. """
stars = max(1, min(5, round(score / 20))) # Normalize 100-scale to 5-star scale
return stars, "⭐" * stars
def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, citation_score, safe_browsing_score, final_score) -> str:
""" Generates a human-readable explanation for the score. """
reasons = []
if domain_trust < 50:
reasons.append("The source has low domain authority.")
else:
reasons.append("The source has high domain authority.")
if similarity_score < 50:
reasons.append("The content is not highly relevant to your query.")
else:
reasons.append("The content is highly relevant to your query.")
if fact_check_score < 50:
reasons.append("Limited fact-checking verification found.")
else:
reasons.append("High level of fact-checking verification found.")
if bias_score < 50:
reasons.append("Potential bias detected in the content.")
else:
reasons.append("No bias detected in the content.")
if citation_score < 30:
reasons.append("Few citations found for this content.")
else:
reasons.append("High level of citations found for this content.")
if safe_browsing_score < 50:
reasons.append("No malicious content detected.")
else:
reasons.append("Possible malicious content detected.")
return " ".join(reasons) if reasons else "This source is highly credible and relevant."
def check_google_safe_browsing(self, url: str) -> int:
"""
Uses Google Safe Browsing API to check if a URL is malicious.
Returns:
- 100 if safe
- 30 if flagged as potentially harmful
- 10 if confirmed malicious
"""
api_url = f"https://safebrowsing.googleapis.com/v4/threatMatches:find?key={self.google_safe_browsing_key}"
payload = {
"client": {
"clientId": "your-app",
"clientVersion": "1.0"
},
"threatInfo": {
"threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
"platformTypes": ["ANY_PLATFORM"],
"threatEntryTypes": ["URL"],
"threatEntries": [{"url": url}]
}
}
try:
response = requests.post(api_url, json=payload)
data = response.json()
if "matches" in data:
return 10 # Malicious URL detected
return 100 # Safe URL
except:
return 50 # Default score if API request fails
def rate_url_validity(self, user_query: str, url: str) -> dict:
""" Main function to evaluate the validity of a webpage. """
content = self.fetch_page_content(url)
domain_trust = self.get_domain_trust(url, content)
similarity_score = self.compute_similarity_score(user_query, content)
fact_check_score = self.check_facts(content)
bias_score = self.detect_bias(content)
citation_score = self.check_google_scholar(url)
safe_browsing_score = self.check_google_safe_browsing(url)
final_score = (
(0.30 * domain_trust) +
(0.30 * similarity_score) +
(0.20 * fact_check_score) +
(0.10 * bias_score) +
(0.10 * citation_score) +
(0.05 * safe_browsing_score)
)
stars, icon = self.get_star_rating(final_score)
explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, citation_score, safe_browsing_score, final_score)
return {
"raw_score": {
"Domain Trust": domain_trust,
"Content Relevance": similarity_score,
"Fact-Check Score": fact_check_score,
"Bias Score": bias_score,
"Citation Score": citation_score,
"Safe Browsing Score": safe_browsing_score,
"Final Validity Score": final_score
},
"stars": {
"score": stars,
"icon": icon
},
"explanation": explanation
}
st.title("URL Validator")
# Input fields for user prompt and URL
user_prompt = st.text_input("Enter your query:", placeholder="e.g., What mods should I use on Volt Prime?")
url_to_check = st.text_input("Enter URL to validate:", placeholder="e.g., https://overframe.gg/items/arsenal/61/volt-prime/")
# Run validation on button click
if st.button("Validate URL"):
if user_prompt and url_to_check:
validator = URLValidator()
result = validator.rate_url_validity(user_prompt, url_to_check)
st.subheader("Validation Results")
st.json(result) # Display JSON object
else:
st.warning("Please enter both a query and a URL.")