File size: 9,536 Bytes
8a84ec3
eedcb35
 
 
 
 
 
 
 
 
 
 
 
 
 
4c189f4
eedcb35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a84ec3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import streamlit as st
import os
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline

class URLValidator:
    """

    A production-ready URL validation class that evaluates the credibility of a webpage

    using multiple factors: domain trust, content relevance, fact-checking, bias detection, citations, and security.

    """

    def __init__(self):
        # API Keys
        self.serpapi_key = os.getenv('SERPAPI_KEY')
        self.google_safe_browsing_key = os.getenv('GOOGLE_SAFE_KEY')

        # Load models once to avoid redundant API calls
        self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
        self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
        self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")

    def fetch_page_content(self, url: str) -> str:
        """ Fetches and extracts text content from the given URL. """
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            soup = BeautifulSoup(response.text, "html.parser")
            return " ".join([p.text for p in soup.find_all("p")])  # Extract paragraph text
        except requests.RequestException:
            return ""  # Fail gracefully by returning an empty string

    def get_domain_trust(self, url: str, content: str) -> int:
            """ Computes the domain trust score based on available data sources. """
            trust_scores = []

            # Hugging Face Fake News Detector
            if content:
                try:
                    trust_scores.append(self.get_domain_trust_huggingface(content))
                except:
                    pass

            # Compute final score (average of available scores)
            return int(sum(trust_scores) / len(trust_scores)) if trust_scores else 50

    def get_domain_trust_huggingface(self, content: str) -> int:
        """ Uses a Hugging Face fake news detection model to assess credibility. """
        if not content:
            return 50  # Default score if no content available
        result = self.fake_news_classifier(content[:512])[0]  # Process only first 512 characters
        return 100 if result["label"] == "REAL" else 30 if result["label"] == "FAKE" else 50

    def compute_similarity_score(self, user_query: str, content: str) -> int:
        """ Computes semantic similarity between user query and page content. """
        if not content:
            return 0
        return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100)

    def check_facts(self, content: str) -> int:
        """ Cross-checks extracted content with Google Fact Check API. """
        if not content:
            return 50
        api_url = f"https://toolbox.google.com/factcheck/api/v1/claimsearch?query={content[:200]}"
        try:
            response = requests.get(api_url)
            data = response.json()
            return 80 if "claims" in data and data["claims"] else 40
        except:
            return 50  # Default uncertainty score

    def check_google_scholar(self, url: str) -> int:
        """ Checks Google Scholar citations using SerpAPI. """
        serpapi_key = self.serpapi_key
        params = {"q": url, "engine": "google_scholar", "api_key": serpapi_key}
        try:
            response = requests.get("https://serpapi.com/search", params=params)
            data = response.json()
            return min(len(data.get("organic_results", [])) * 10, 100)  # Normalize
        except:
            return 0  # Default to no citations

    def detect_bias(self, content: str) -> int:
        """ Uses NLP sentiment analysis to detect potential bias in content. """
        if not content:
            return 50
        sentiment_result = self.sentiment_analyzer(content[:512])[0]
        return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30

    def get_star_rating(self, score: float) -> tuple:
        """ Converts a score (0-100) into a 1-5 star rating. """
        stars = max(1, min(5, round(score / 20)))  # Normalize 100-scale to 5-star scale
        return stars, "⭐" * stars

    def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, citation_score, safe_browsing_score, final_score) -> str:
        """ Generates a human-readable explanation for the score. """
        reasons = []
        if domain_trust < 50:
            reasons.append("The source has low domain authority.")
        else:
            reasons.append("The source has high domain authority.")
        if similarity_score < 50:
            reasons.append("The content is not highly relevant to your query.")
        else:
            reasons.append("The content is highly relevant to your query.")
        if fact_check_score < 50:
            reasons.append("Limited fact-checking verification found.")
        else:
            reasons.append("High level of fact-checking verification found.")
        if bias_score < 50:
            reasons.append("Potential bias detected in the content.")
        else:
            reasons.append("No bias detected in the content.")
        if citation_score < 30:
            reasons.append("Few citations found for this content.")
        else:
            reasons.append("High level of citations found for this content.")
        if safe_browsing_score < 50:
            reasons.append("No malicious content detected.")
        else:
            reasons.append("Possible malicious content detected.")

        return " ".join(reasons) if reasons else "This source is highly credible and relevant."



    def check_google_safe_browsing(self, url: str) -> int:
        """

        Uses Google Safe Browsing API to check if a URL is malicious.

        Returns:

            - 100 if safe

            - 30 if flagged as potentially harmful

            - 10 if confirmed malicious

        """
        api_url = f"https://safebrowsing.googleapis.com/v4/threatMatches:find?key={self.google_safe_browsing_key}"
        payload = {
            "client": {
                "clientId": "your-app",
                "clientVersion": "1.0"
            },
            "threatInfo": {
                "threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
                "platformTypes": ["ANY_PLATFORM"],
                "threatEntryTypes": ["URL"],
                "threatEntries": [{"url": url}]
            }
        }

        try:
            response = requests.post(api_url, json=payload)
            data = response.json()
            if "matches" in data:
                return 10  # Malicious URL detected
            return 100  # Safe URL
        except:
            return 50  # Default score if API request fails

    def rate_url_validity(self, user_query: str, url: str) -> dict:
        """ Main function to evaluate the validity of a webpage. """
        content = self.fetch_page_content(url)

        domain_trust = self.get_domain_trust(url, content)
        similarity_score = self.compute_similarity_score(user_query, content)
        fact_check_score = self.check_facts(content)
        bias_score = self.detect_bias(content)
        citation_score = self.check_google_scholar(url)
        safe_browsing_score = self.check_google_safe_browsing(url)

        final_score = (
            (0.30 * domain_trust) +
            (0.30 * similarity_score) +
            (0.20 * fact_check_score) +
            (0.10 * bias_score) +
            (0.10 * citation_score) +
            (0.05 * safe_browsing_score)
        )

        stars, icon = self.get_star_rating(final_score)
        explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, citation_score, safe_browsing_score, final_score)

        return {
            "raw_score": {
                "Domain Trust": domain_trust,
                "Content Relevance": similarity_score,
                "Fact-Check Score": fact_check_score,
                "Bias Score": bias_score,
                "Citation Score": citation_score,
                "Safe Browsing Score": safe_browsing_score,
                "Final Validity Score": final_score
            },
            "stars": {
                "score": stars,
                "icon": icon
            },
            "explanation": explanation
        }


st.title("URL Validator")

# Input fields for user prompt and URL
user_prompt = st.text_input("Enter your query:", placeholder="e.g., What mods should I use on Volt Prime?")
url_to_check = st.text_input("Enter URL to validate:", placeholder="e.g., https://overframe.gg/items/arsenal/61/volt-prime/")

# Run validation on button click
if st.button("Validate URL"):
    if user_prompt and url_to_check:
        validator = URLValidator()
        result = validator.rate_url_validity(user_prompt, url_to_check)

        st.subheader("Validation Results")
        st.json(result)  # Display JSON object
    else:
        st.warning("Please enter both a query and a URL.")