pt09490n commited on
Commit
eedcb35
·
1 Parent(s): 8a84ec3

Adding code for app.py and updating requirements.txt

Browse files
Files changed (2) hide show
  1. app.py +214 -1
  2. requirements.txt +7 -1
app.py CHANGED
@@ -1,4 +1,217 @@
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
 
4
- st.write("#Validate URL Application ")
 
1
  import streamlit as st
2
+ import os
3
+ import requests
4
+ from bs4 import BeautifulSoup
5
+ from sentence_transformers import SentenceTransformer, util
6
+ from transformers import pipeline
7
+
8
+ class URLValidator:
9
+ """
10
+ A production-ready URL validation class that evaluates the credibility of a webpage
11
+ using multiple factors: domain trust, content relevance, fact-checking, bias detection, citations, and security.
12
+ """
13
+
14
+ def __init__(self):
15
+ # API Keys
16
+ self.serpapi_key = os.genenv('SERPAPI_KEY')
17
+ self.google_safe_browsing_key = os.getenv('GOOGLE_SAFE_KEY')
18
+
19
+ # Load models once to avoid redundant API calls
20
+ self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
21
+ self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
22
+ self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
23
+
24
+ def fetch_page_content(self, url: str) -> str:
25
+ """ Fetches and extracts text content from the given URL. """
26
+ try:
27
+ response = requests.get(url, timeout=10)
28
+ response.raise_for_status()
29
+ soup = BeautifulSoup(response.text, "html.parser")
30
+ return " ".join([p.text for p in soup.find_all("p")]) # Extract paragraph text
31
+ except requests.RequestException:
32
+ return "" # Fail gracefully by returning an empty string
33
+
34
+ def get_domain_trust(self, url: str, content: str) -> int:
35
+ """ Computes the domain trust score based on available data sources. """
36
+ trust_scores = []
37
+
38
+ # Hugging Face Fake News Detector
39
+ if content:
40
+ try:
41
+ trust_scores.append(self.get_domain_trust_huggingface(content))
42
+ except:
43
+ pass
44
+
45
+ # Compute final score (average of available scores)
46
+ return int(sum(trust_scores) / len(trust_scores)) if trust_scores else 50
47
+
48
+ def get_domain_trust_huggingface(self, content: str) -> int:
49
+ """ Uses a Hugging Face fake news detection model to assess credibility. """
50
+ if not content:
51
+ return 50 # Default score if no content available
52
+ result = self.fake_news_classifier(content[:512])[0] # Process only first 512 characters
53
+ return 100 if result["label"] == "REAL" else 30 if result["label"] == "FAKE" else 50
54
+
55
+ def compute_similarity_score(self, user_query: str, content: str) -> int:
56
+ """ Computes semantic similarity between user query and page content. """
57
+ if not content:
58
+ return 0
59
+ return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100)
60
+
61
+ def check_facts(self, content: str) -> int:
62
+ """ Cross-checks extracted content with Google Fact Check API. """
63
+ if not content:
64
+ return 50
65
+ api_url = f"https://toolbox.google.com/factcheck/api/v1/claimsearch?query={content[:200]}"
66
+ try:
67
+ response = requests.get(api_url)
68
+ data = response.json()
69
+ return 80 if "claims" in data and data["claims"] else 40
70
+ except:
71
+ return 50 # Default uncertainty score
72
+
73
+ def check_google_scholar(self, url: str) -> int:
74
+ """ Checks Google Scholar citations using SerpAPI. """
75
+ serpapi_key = self.serpapi_key
76
+ params = {"q": url, "engine": "google_scholar", "api_key": serpapi_key}
77
+ try:
78
+ response = requests.get("https://serpapi.com/search", params=params)
79
+ data = response.json()
80
+ return min(len(data.get("organic_results", [])) * 10, 100) # Normalize
81
+ except:
82
+ return 0 # Default to no citations
83
+
84
+ def detect_bias(self, content: str) -> int:
85
+ """ Uses NLP sentiment analysis to detect potential bias in content. """
86
+ if not content:
87
+ return 50
88
+ sentiment_result = self.sentiment_analyzer(content[:512])[0]
89
+ return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30
90
+
91
+ def get_star_rating(self, score: float) -> tuple:
92
+ """ Converts a score (0-100) into a 1-5 star rating. """
93
+ stars = max(1, min(5, round(score / 20))) # Normalize 100-scale to 5-star scale
94
+ return stars, "⭐" * stars
95
+
96
+ def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, citation_score, safe_browsing_score, final_score) -> str:
97
+ """ Generates a human-readable explanation for the score. """
98
+ reasons = []
99
+ if domain_trust < 50:
100
+ reasons.append("The source has low domain authority.")
101
+ else:
102
+ reasons.append("The source has high domain authority.")
103
+ if similarity_score < 50:
104
+ reasons.append("The content is not highly relevant to your query.")
105
+ else:
106
+ reasons.append("The content is highly relevant to your query.")
107
+ if fact_check_score < 50:
108
+ reasons.append("Limited fact-checking verification found.")
109
+ else:
110
+ reasons.append("High level of fact-checking verification found.")
111
+ if bias_score < 50:
112
+ reasons.append("Potential bias detected in the content.")
113
+ else:
114
+ reasons.append("No bias detected in the content.")
115
+ if citation_score < 30:
116
+ reasons.append("Few citations found for this content.")
117
+ else:
118
+ reasons.append("High level of citations found for this content.")
119
+ if safe_browsing_score < 50:
120
+ reasons.append("No malicious content detected.")
121
+ else:
122
+ reasons.append("Possible malicious content detected.")
123
+
124
+ return " ".join(reasons) if reasons else "This source is highly credible and relevant."
125
+
126
+
127
+
128
+ def check_google_safe_browsing(self, url: str) -> int:
129
+ """
130
+ Uses Google Safe Browsing API to check if a URL is malicious.
131
+ Returns:
132
+ - 100 if safe
133
+ - 30 if flagged as potentially harmful
134
+ - 10 if confirmed malicious
135
+ """
136
+ api_url = f"https://safebrowsing.googleapis.com/v4/threatMatches:find?key={self.google_safe_browsing_key}"
137
+ payload = {
138
+ "client": {
139
+ "clientId": "your-app",
140
+ "clientVersion": "1.0"
141
+ },
142
+ "threatInfo": {
143
+ "threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
144
+ "platformTypes": ["ANY_PLATFORM"],
145
+ "threatEntryTypes": ["URL"],
146
+ "threatEntries": [{"url": url}]
147
+ }
148
+ }
149
+
150
+ try:
151
+ response = requests.post(api_url, json=payload)
152
+ data = response.json()
153
+ if "matches" in data:
154
+ return 10 # Malicious URL detected
155
+ return 100 # Safe URL
156
+ except:
157
+ return 50 # Default score if API request fails
158
+
159
+ def rate_url_validity(self, user_query: str, url: str) -> dict:
160
+ """ Main function to evaluate the validity of a webpage. """
161
+ content = self.fetch_page_content(url)
162
+
163
+ domain_trust = self.get_domain_trust(url, content)
164
+ similarity_score = self.compute_similarity_score(user_query, content)
165
+ fact_check_score = self.check_facts(content)
166
+ bias_score = self.detect_bias(content)
167
+ citation_score = self.check_google_scholar(url)
168
+ safe_browsing_score = self.check_google_safe_browsing(url)
169
+
170
+ final_score = (
171
+ (0.30 * domain_trust) +
172
+ (0.30 * similarity_score) +
173
+ (0.20 * fact_check_score) +
174
+ (0.10 * bias_score) +
175
+ (0.10 * citation_score) +
176
+ (0.05 * safe_browsing_score)
177
+ )
178
+
179
+ stars, icon = self.get_star_rating(final_score)
180
+ explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, citation_score, safe_browsing_score, final_score)
181
+
182
+ return {
183
+ "raw_score": {
184
+ "Domain Trust": domain_trust,
185
+ "Content Relevance": similarity_score,
186
+ "Fact-Check Score": fact_check_score,
187
+ "Bias Score": bias_score,
188
+ "Citation Score": citation_score,
189
+ "Safe Browsing Score": safe_browsing_score,
190
+ "Final Validity Score": final_score
191
+ },
192
+ "stars": {
193
+ "score": stars,
194
+ "icon": icon
195
+ },
196
+ "explanation": explanation
197
+ }
198
+
199
+
200
+ st.title("URL Validator")
201
+
202
+ # Input fields for user prompt and URL
203
+ user_prompt = st.text_input("Enter your query:", placeholder="e.g., What mods should I use on Volt Prime?")
204
+ url_to_check = st.text_input("Enter URL to validate:", placeholder="e.g., https://overframe.gg/items/arsenal/61/volt-prime/")
205
+
206
+ # Run validation on button click
207
+ if st.button("Validate URL"):
208
+ if user_prompt and url_to_check:
209
+ validator = URLValidator()
210
+ result = validator.rate_url_validity(user_prompt, url_to_check)
211
+
212
+ st.subheader("Validation Results")
213
+ st.json(result) # Display JSON object
214
+ else:
215
+ st.warning("Please enter both a query and a URL.")
216
 
217
 
 
requirements.txt CHANGED
@@ -1 +1,7 @@
1
- streamlit
 
 
 
 
 
 
 
1
+ streamlit
2
+ requests
3
+ beautifulsoup4
4
+ sentence-transformers
5
+ transformers
6
+ torch
7
+ os