Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,85 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import tensorflow as tf
|
6 |
|
7 |
-
model_path = r'./model12_acc99_kera.h5'
|
8 |
|
9 |
-
# Function to preprocess the image and make predictions
|
10 |
-
def classify_lung_and_colon(input_image):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
return f"Prediction: {class_label}, Confidence: {confidence:.2f}"
|
29 |
-
except Exception as e:
|
30 |
-
return str(e)
|
31 |
|
32 |
# Creating a Gradio interface
|
33 |
iface = gr.Interface(
|
34 |
-
fn=
|
35 |
inputs="image",
|
36 |
outputs="text",
|
37 |
title="Lung and Colon Cancer Detection",
|
38 |
description="Upload a Histopathology Image",
|
39 |
flagging_options = ["Wrong Prediction"],
|
40 |
-
theme = 'darkhuggingface'
|
41 |
-
)
|
42 |
-
|
43 |
-
# Launching the Gradio interface
|
44 |
-
iface.launch(inline = False)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import tensorflow as tf
|
6 |
|
7 |
+
# model_path = r'./model12_acc99_kera.h5'
|
8 |
|
9 |
+
# # Function to preprocess the image and make predictions
|
10 |
+
# def classify_lung_and_colon(input_image):
|
11 |
+
# try:
|
12 |
+
# # Preprocess the image (resize, normalize, etc.)
|
13 |
+
# input_image = np.array(input_image)
|
14 |
+
# input_image_copy = input_image.copy() # Making a copy to avoid the array reference issue
|
15 |
+
# input_image_resized = np.array(Image.fromarray(input_image_copy).resize((228,228)))
|
16 |
+
# # / 255.0
|
17 |
+
# input_image_resized = np.expand_dims(input_image_resized, axis=0)
|
18 |
|
19 |
+
# # Making predictions
|
20 |
+
# model_h5 = tf.keras.models.load_model(model_path)
|
21 |
+
# predictions = model_h5.predict(input_image_resized)
|
22 |
|
23 |
+
# # Getting the class with the highest probability
|
24 |
+
# class_idx = np.argmax(predictions)
|
25 |
+
# class_label = ["Colon Adenocarcinoma", "Colon Benign Tissue", "Lung Adenocarcinoma", "Lung Benign Tissue","Lung Squamous Cell Carcinoma"][class_idx]
|
26 |
+
# confidence = predictions[0][class_idx]
|
27 |
+
|
28 |
+
# return f"Prediction: {class_label}, Confidence: {confidence:.2f}"
|
29 |
+
# except Exception as e:
|
30 |
+
# return str(e)
|
31 |
+
|
32 |
+
# # Creating a Gradio interface
|
33 |
+
# iface = gr.Interface(
|
34 |
+
# fn=classify_lung_and_colon,
|
35 |
+
# inputs="image",
|
36 |
+
# outputs="text",
|
37 |
+
# title="Lung and Colon Cancer Detection",
|
38 |
+
# description="Upload a Histopathology Image",
|
39 |
+
# flagging_options = ["Wrong Prediction"],
|
40 |
+
# theme = 'darkhuggingface'
|
41 |
+
# )
|
42 |
+
|
43 |
+
# # Launching the Gradio interface
|
44 |
+
# iface.launch(inline = False)
|
45 |
+
import tensorflow as tf
|
46 |
+
import numpy as np
|
47 |
+
from PIL import Image
|
48 |
+
|
49 |
+
# Load the trained model
|
50 |
+
model = tf.keras.models.load_model("./model12_acc99_kera.h5")
|
51 |
+
|
52 |
+
# Define image preprocessing function
|
53 |
+
def preprocess_image(image):
|
54 |
+
# Resize the image to match the input size of the model
|
55 |
+
img = image.resize((224, 224))
|
56 |
+
# Convert image to numpy array
|
57 |
+
img_array = np.array(img)
|
58 |
+
# Normalize pixel values to the range [0, 1]
|
59 |
+
img_array = img_array / 255.0
|
60 |
+
# Expand dimensions to match the model's expected input shape
|
61 |
+
img_array = np.expand_dims(img_array, axis=0)
|
62 |
+
return img_array
|
63 |
+
|
64 |
+
# Define the prediction function
|
65 |
+
def predict(image):
|
66 |
+
# Preprocess the image
|
67 |
+
processed_image = preprocess_image(image)
|
68 |
+
# Perform inference
|
69 |
+
predictions = model.predict(processed_image)
|
70 |
+
# Convert predictions to class labels
|
71 |
+
class_labels = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
72 |
+
predicted_class = class_labels[np.argmax(predictions)]
|
73 |
+
return predicted_class
|
74 |
|
|
|
|
|
|
|
75 |
|
76 |
# Creating a Gradio interface
|
77 |
iface = gr.Interface(
|
78 |
+
fn=predict,
|
79 |
inputs="image",
|
80 |
outputs="text",
|
81 |
title="Lung and Colon Cancer Detection",
|
82 |
description="Upload a Histopathology Image",
|
83 |
flagging_options = ["Wrong Prediction"],
|
84 |
+
# theme = 'darkhuggingface'
|
85 |
+
)
|
|
|
|
|
|