Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,28 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
import tensorflow as tf
|
5 |
-
import os
|
6 |
|
7 |
-
|
8 |
-
print("Current working directory:", os.getcwd())
|
9 |
-
|
10 |
-
# Update this to the correct path of your model
|
11 |
-
model_path = r'./model12acc99_kera.h5'
|
12 |
-
|
13 |
-
# Custom object configuration handling
|
14 |
-
def custom_separable_conv2d(**kwargs):
|
15 |
-
# Remove unsupported parameters if they exist
|
16 |
-
kwargs.pop('kernel_initializer', None)
|
17 |
-
kwargs.pop('kernel_regularizer', None)
|
18 |
-
kwargs.pop('kernel_constraint', None)
|
19 |
-
return tf.keras.layers.SeparableConv2D(**kwargs)
|
20 |
-
|
21 |
-
# Register custom object
|
22 |
-
custom_objects = {'SeparableConv2D': custom_separable_conv2d}
|
23 |
-
|
24 |
-
# Check if the file exists
|
25 |
-
if not os.path.exists(model_path):
|
26 |
-
raise FileNotFoundError(f"Model file not found at {model_path}")
|
27 |
-
|
28 |
-
# Load the model with custom objects
|
29 |
-
model_h5 = tf.keras.models.load_model(model_path, custom_objects=custom_objects)
|
30 |
|
31 |
# Function to preprocess the image and make predictions
|
32 |
-
def
|
33 |
try:
|
34 |
# Preprocess the image (resize, normalize, etc.)
|
35 |
input_image = np.array(input_image)
|
36 |
-
|
|
|
|
|
37 |
input_image_resized = np.expand_dims(input_image_resized, axis=0)
|
38 |
|
39 |
# Making predictions
|
|
|
40 |
predictions = model_h5.predict(input_image_resized)
|
41 |
|
42 |
# Getting the class with the highest probability
|
43 |
class_idx = np.argmax(predictions)
|
44 |
-
class_label = ["Colon Adenocarcinoma", "Colon Benign Tissue", "Lung Adenocarcinoma", "Lung Benign Tissue",
|
45 |
confidence = predictions[0][class_idx]
|
46 |
|
47 |
return f"Prediction: {class_label}, Confidence: {confidence:.2f}"
|
@@ -50,14 +31,14 @@ def classify_Lung_and_colon_image(input_image):
|
|
50 |
|
51 |
# Creating a Gradio interface
|
52 |
iface = gr.Interface(
|
53 |
-
fn=
|
54 |
inputs="image",
|
55 |
outputs="text",
|
56 |
title="Lung and Colon Cancer Detection",
|
57 |
-
description="Upload a Histopathology Image
|
58 |
-
flagging_options=["
|
59 |
-
theme=
|
60 |
)
|
61 |
|
62 |
# Launching the Gradio interface
|
63 |
-
iface.launch(inline=False)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import tensorflow as tf
|
|
|
6 |
|
7 |
+
model_path = r'./model12_acc99_kera.h5'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Function to preprocess the image and make predictions
|
10 |
+
def classify_lung_and_colon(input_image):
|
11 |
try:
|
12 |
# Preprocess the image (resize, normalize, etc.)
|
13 |
input_image = np.array(input_image)
|
14 |
+
input_image_copy = input_image.copy() # Making a copy to avoid the array reference issue
|
15 |
+
input_image_resized = np.array(Image.fromarray(input_image_copy).resize((228,228)))
|
16 |
+
# / 255.0
|
17 |
input_image_resized = np.expand_dims(input_image_resized, axis=0)
|
18 |
|
19 |
# Making predictions
|
20 |
+
model_h5 = tf.keras.models.load_model(model_path)
|
21 |
predictions = model_h5.predict(input_image_resized)
|
22 |
|
23 |
# Getting the class with the highest probability
|
24 |
class_idx = np.argmax(predictions)
|
25 |
+
class_label = ["Colon Adenocarcinoma", "Colon Benign Tissue", "Lung Adenocarcinoma", "Lung Benign Tissue","Lung Squamous Cell Carcinoma"][class_idx]
|
26 |
confidence = predictions[0][class_idx]
|
27 |
|
28 |
return f"Prediction: {class_label}, Confidence: {confidence:.2f}"
|
|
|
31 |
|
32 |
# Creating a Gradio interface
|
33 |
iface = gr.Interface(
|
34 |
+
fn=classify_lung_and_colon,
|
35 |
inputs="image",
|
36 |
outputs="text",
|
37 |
title="Lung and Colon Cancer Detection",
|
38 |
+
description="Upload a Histopathology Image",
|
39 |
+
flagging_options = ["Wrong Prediction"],
|
40 |
+
theme = 'darkhuggingface'
|
41 |
)
|
42 |
|
43 |
# Launching the Gradio interface
|
44 |
+
iface.launch(inline = False)
|