Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import time | |
import torch | |
import spaces | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from transformers import ( | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
from transformers import Qwen2_5_VLForConditionalGeneration | |
# --------------------------- | |
# Helper Functions | |
# --------------------------- | |
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str: | |
""" | |
Returns an HTML snippet for a thin animated progress bar with a label. | |
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision. | |
""" | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
def downsample_video(video_path): | |
""" | |
Downsamples a video file by extracting 10 evenly spaced frames. | |
Returns a list of tuples (PIL.Image, timestamp). | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
if total_frames <= 0 or fps <= 0: | |
vidcap.release() | |
return frames | |
# Determine 10 evenly spaced frame indices. | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
# Model and Processor Setup | |
# Qwen2VL OCR (default branch) | |
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct | |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True) | |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( | |
QV_MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
# RolmOCR branch (@RolmOCR) | |
ROLMOCR_MODEL_ID = "reducto/RolmOCR" | |
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True) | |
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
ROLMOCR_MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16 | |
).to("cuda").eval() | |
# Main Inference Function | |
def model_inference(input_dict, history): | |
text = input_dict["text"].strip() | |
files = input_dict.get("files", []) | |
# RolmOCR Inference (@RolmOCR) | |
if text.lower().startswith("@rolmocr"): | |
# Remove the tag from the query. | |
text_prompt = text[len("@rolmocr"):].strip() | |
# Check if a video is provided for inference. | |
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")): | |
video_path = files[0] | |
frames = downsample_video(video_path) | |
if not frames: | |
yield "Error: Could not extract frames from the video." | |
return | |
# Build the message: prompt followed by each frame with its timestamp. | |
content_list = [{"type": "text", "text": text_prompt}] | |
for image, timestamp in frames: | |
content_list.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
content_list.append({"type": "image", "image": image}) | |
messages = [{"role": "user", "content": content_list}] | |
# For video, extract images only. | |
video_images = [image for image, _ in frames] | |
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = rolmocr_processor( | |
text=[prompt_full], | |
images=video_images, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
else: | |
# Assume image(s) or text query. | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
if text_prompt == "" and not images: | |
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text_prompt}, | |
], | |
}] | |
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = rolmocr_processor( | |
text=[prompt_full], | |
images=images if images else None, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
# Use a different color scheme for RolmOCR (purple-themed). | |
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
return | |
# Default Inference: Qwen2VL OCR | |
# Process files: support multiple images. | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
if text == "" and not images: | |
yield "Error: Please input a text query and optionally image(s)." | |
return | |
if text == "" and images: | |
yield "Error: Please input a text query along with the image(s)." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
], | |
}] | |
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = qwen_processor( | |
text=[prompt_full], | |
images=images if images else None, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Qwen2VL OCR") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
# Gradio Interface | |
examples = [ | |
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}], | |
[{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}], | |
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}], | |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], | |
] | |
demo = gr.ChatInterface( | |
fn=model_inference, | |
description="# **Multimodal OCR `@RolmOCR and Default Qwen2VL OCR`**", | |
examples=examples, | |
textbox=gr.MultimodalTextbox( | |
label="Query Input", | |
file_types=["image", "video"], | |
file_count="multiple", | |
placeholder="Use tag @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR" | |
), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
cache_examples=False, | |
) | |
demo.launch(debug=True) |