Multimodal-OCR / app.py
prithivMLmods's picture
Update app.py
055bda4 verified
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers import Qwen2_5_VLForConditionalGeneration
# ---------------------------
# Helper Functions
# ---------------------------
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
"""
Returns an HTML snippet for a thin animated progress bar with a label.
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples a video file by extracting 10 evenly spaced frames.
Returns a list of tuples (PIL.Image, timestamp).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Determine 10 evenly spaced frame indices.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Model and Processor Setup
# Qwen2VL OCR (default branch)
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# RolmOCR branch (@RolmOCR)
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
ROLMOCR_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Main Inference Function
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
# RolmOCR Inference (@RolmOCR)
if text.lower().startswith("@rolmocr"):
# Remove the tag from the query.
text_prompt = text[len("@rolmocr"):].strip()
# Check if a video is provided for inference.
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")):
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
yield "Error: Could not extract frames from the video."
return
# Build the message: prompt followed by each frame with its timestamp.
content_list = [{"type": "text", "text": text_prompt}]
for image, timestamp in frames:
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
content_list.append({"type": "image", "image": image})
messages = [{"role": "user", "content": content_list}]
# For video, extract images only.
video_images = [image for image, _ in frames]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
else:
# Assume image(s) or text query.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text_prompt == "" and not images:
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text_prompt},
],
}]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
# Use a different color scheme for RolmOCR (purple-themed).
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Default Inference: Qwen2VL OCR
# Process files: support multiple images.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
yield "Error: Please input a text query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = qwen_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface
examples = [
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
[{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}],
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Multimodal OCR `@RolmOCR and Default Qwen2VL OCR`**",
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Use tag @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR"
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
demo.launch(debug=True)