Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,446 Bytes
ed275c9 5d63d59 ed275c9 5d63d59 fc95e60 6401487 92e002a 6401487 92e002a ed275c9 92e002a d2b791d 92e002a 7342b9f 92e002a 7342b9f c8cd2f3 7342b9f 6401487 92e002a 6401487 92e002a 6401487 92e002a d2b791d 3f6a788 91cda81 ed275c9 92e002a 6401487 ed275c9 9522057 3f6a788 92e002a 64f9a07 92e002a 64f9a07 239e8eb 92e002a 64f9a07 92e002a 64f9a07 92e002a d2b791d 92e002a d2b791d 92e002a fc95e60 3f6a788 fc95e60 92e002a 5d63d59 fc95e60 3f6a788 5d63d59 3f6a788 92e002a 3f6a788 92e002a fc95e60 5633a75 fe53594 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 7342b9f ed275c9 0de5083 5d63d59 ed275c9 92e002a 5d63d59 92e002a 5afd124 1ed1b2f 64f9a07 9522057 91cda81 9522057 c2fa869 91cda81 7342b9f 6401487 7342b9f d2b791d 7342b9f 91cda81 fc95e60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers import Qwen2_5_VLForConditionalGeneration
# ---------------------------
# Helper Functions
# ---------------------------
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
"""
Returns an HTML snippet for a thin animated progress bar with a label.
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples a video file by extracting 10 evenly spaced frames.
Returns a list of tuples (PIL.Image, timestamp).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Determine 10 evenly spaced frame indices.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Model and Processor Setup
# Qwen2VL OCR (default branch)
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# RolmOCR branch (@RolmOCR)
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
ROLMOCR_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Main Inference Function
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
# RolmOCR Inference (@RolmOCR)
if text.lower().startswith("@rolmocr"):
# Remove the tag from the query.
text_prompt = text[len("@rolmocr"):].strip()
# Check if a video is provided for inference.
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")):
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
yield "Error: Could not extract frames from the video."
return
# Build the message: prompt followed by each frame with its timestamp.
content_list = [{"type": "text", "text": text_prompt}]
for image, timestamp in frames:
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
content_list.append({"type": "image", "image": image})
messages = [{"role": "user", "content": content_list}]
# For video, extract images only.
video_images = [image for image, _ in frames]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
else:
# Assume image(s) or text query.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text_prompt == "" and not images:
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text_prompt},
],
}]
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = rolmocr_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
# Use a different color scheme for RolmOCR (purple-themed).
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Default Inference: Qwen2VL OCR
# Process files: support multiple images.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
yield "Error: Please input a text query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = qwen_processor(
text=[prompt_full],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface
examples = [
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
[{"text": "@RolmOCR Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}],
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Multimodal OCR `@RolmOCR and Default Qwen2VL OCR`**",
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Use tag @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR"
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
demo.launch(debug=True) |