import gradio as gr | |
from transformers import pipeline | |
# Pretrained model load karo (direct original repo se) | |
model_name = "ByteDance-Seed/UI-TARS-1.5-7B" # β Replace karo actual model path se | |
generator = pipeline("text-generation", model=model_name) | |
# Text generate karne ka function | |
def generate_text(prompt): | |
result = generator(prompt, max_new_tokens=100, do_sample=True) | |
return result[0]["generated_text"] | |
# Gradio Interface | |
gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt..."), | |
outputs="text", | |
title="UITARS 1.5 Text Generator" | |
).launch() | |