import gradio as gr from transformers import pipeline # Pretrained model load karo (direct original repo se) model_name = "ByteDance-Seed/UI-TARS-1.5-7B" # ← Replace karo actual model path se generator = pipeline("text-generation", model=model_name) # Text generate karne ka function def generate_text(prompt): result = generator(prompt, max_new_tokens=100, do_sample=True) return result[0]["generated_text"] # Gradio Interface gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=2, placeholder="Enter your prompt..."), outputs="text", title="UITARS 1.5 Text Generator" ).launch()