prakashkota commited on
Commit
4b5496f
·
1 Parent(s): 8b31992

changed gradio interface to block

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -30,14 +30,23 @@
30
  # Last update: 02 Apr 2025
31
  #+--------------------------------------------------------------------------------------------+
32
 
 
 
 
 
 
 
 
 
 
33
  import gradio as gr
34
  import numpy as np
35
  import pandas as pd
36
- import yfinance as yf
37
  from datetime import datetime
38
  from pandas.tseries.offsets import BDay
39
  from tabulate import tabulate
40
- import os
41
 
42
  from tensorflow.keras.models import load_model
43
  from sklearn.preprocessing import MinMaxScaler
@@ -49,7 +58,7 @@ import shutil
49
  from pytz import timezone
50
  from pandas.tseries.offsets import BDay
51
  import hashlib
52
-
53
  import time
54
  import gc
55
 
@@ -69,11 +78,6 @@ NN_model.predict(np.zeros((1, 5))) # warm-up dummy prediction
69
  scaler_X = joblib.load(os.path.join(model_dir, "scaler_X.pkl"))
70
  scaler_y = joblib.load(os.path.join(model_dir, "scaler_y.pkl"))
71
 
72
- os.environ["YFINANCE_NO_CACHE"] = "1" # <-- 🔥 disables SQLite caching
73
- os.environ["XDG_CACHE_HOME"] = "/tmp/xfake_cache"
74
- if not os.path.exists("/tmp/xfake_cache"):
75
- os.makedirs("/tmp/xfake_cache", exist_ok=True)
76
-
77
  def safe_download(*args, retries=3, delay=1, **kwargs):
78
  for i in range(retries):
79
  try:
 
30
  # Last update: 02 Apr 2025
31
  #+--------------------------------------------------------------------------------------------+
32
 
33
+ import os
34
+
35
+ # MUST come before importing yfinance
36
+ os.environ["YFINANCE_NO_CACHE"] = "1" # disable cache
37
+ os.environ["XDG_CACHE_HOME"] = "/tmp/xfake_cache"
38
+ if not os.path.exists("/tmp/xfake_cache"):
39
+ os.makedirs("/tmp/xfake_cache", exist_ok=True)
40
+
41
+ import yfinance as yf
42
  import gradio as gr
43
  import numpy as np
44
  import pandas as pd
45
+
46
  from datetime import datetime
47
  from pandas.tseries.offsets import BDay
48
  from tabulate import tabulate
49
+
50
 
51
  from tensorflow.keras.models import load_model
52
  from sklearn.preprocessing import MinMaxScaler
 
58
  from pytz import timezone
59
  from pandas.tseries.offsets import BDay
60
  import hashlib
61
+ import yfinance as yf
62
  import time
63
  import gc
64
 
 
78
  scaler_X = joblib.load(os.path.join(model_dir, "scaler_X.pkl"))
79
  scaler_y = joblib.load(os.path.join(model_dir, "scaler_y.pkl"))
80
 
 
 
 
 
 
81
  def safe_download(*args, retries=3, delay=1, **kwargs):
82
  for i in range(retries):
83
  try: