Commit
·
8b31992
1
Parent(s):
42d4336
changed gradio interface to block
Browse files
app.py
CHANGED
@@ -50,7 +50,6 @@ from pytz import timezone
|
|
50 |
from pandas.tseries.offsets import BDay
|
51 |
import hashlib
|
52 |
|
53 |
-
|
54 |
import time
|
55 |
import gc
|
56 |
|
@@ -61,8 +60,6 @@ lock = threading.Lock()
|
|
61 |
|
62 |
# --- Load saved model and scalers --- #
|
63 |
model_dir = "./model"
|
64 |
-
# import os
|
65 |
-
# model_dir = os.path.join(os.path.dirname(__file__), "model")
|
66 |
|
67 |
NN_model = load_model(os.path.join(model_dir, "NN_CPU_model.keras"))
|
68 |
|
@@ -88,53 +85,53 @@ def safe_download(*args, retries=3, delay=1, **kwargs):
|
|
88 |
time.sleep(delay)
|
89 |
raise RuntimeError("yfinance download failed after retries.")
|
90 |
|
91 |
-
lock = threading.Lock()
|
92 |
-
|
93 |
# --- Inference Function --- #
|
94 |
def predict_stock():
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
138 |
|
139 |
features = ["Open", "High", "Low", "Close", "Volume"]
|
140 |
|
@@ -198,9 +195,10 @@ def predict_stock():
|
|
198 |
|
199 |
headers = ["Prediction For Date", "Actual Close", "Predicted Close", "% Error", "±MAPE Range"]
|
200 |
table = tabulate(prediction_df.values, headers=headers, tablefmt="plain")
|
201 |
-
|
202 |
-
"""
|
203 |
# Start Sanity Checks
|
|
|
|
|
204 |
assert not np.any(np.isnan(X_scaled[-1].reshape(1, -1))), "NaNs detected in input!"
|
205 |
assert X_scaled[-1].reshape(1, -1).shape == (1, X_scaled.shape[1]), f"Unexpected shape: {X_scaled[-1].reshape(1, -1).shape}"
|
206 |
print("X_input shape:", X_scaled[-1].reshape(1, -1).shape)
|
@@ -221,21 +219,19 @@ def predict_stock():
|
|
221 |
print("Debug prediction (scaled):", y_debug)
|
222 |
print("Debug prediction (unscaled):", y_debug_unscaled)
|
223 |
|
|
|
|
|
224 |
import hashlib
|
225 |
|
226 |
def md5(fname):
|
227 |
with open(fname, "rb") as f:
|
228 |
return hashlib.md5(f.read()).hexdigest()
|
229 |
|
230 |
-
|
231 |
|
232 |
print(full_data.tail(3))
|
233 |
|
234 |
-
# End Sanitiy Checks
|
235 |
-
"""
|
236 |
-
|
237 |
-
# Prints in log and helps to verify any issues with yfinance downloads
|
238 |
-
print("Attempting to fetch data from", start_date, "to", today)
|
239 |
|
240 |
return summary, prediction_df[["Date", "Actual Close", "Predicted Close", "% Error", "±MAPE Range"]]
|
241 |
|
@@ -255,7 +251,7 @@ demo = gr.Interface(
|
|
255 |
live=True #<-- changed to True for live queuing
|
256 |
)
|
257 |
|
258 |
-
demo.launch(
|
259 |
"""
|
260 |
|
261 |
with gr.Blocks() as demo:
|
|
|
50 |
from pandas.tseries.offsets import BDay
|
51 |
import hashlib
|
52 |
|
|
|
53 |
import time
|
54 |
import gc
|
55 |
|
|
|
60 |
|
61 |
# --- Load saved model and scalers --- #
|
62 |
model_dir = "./model"
|
|
|
|
|
63 |
|
64 |
NN_model = load_model(os.path.join(model_dir, "NN_CPU_model.keras"))
|
65 |
|
|
|
85 |
time.sleep(delay)
|
86 |
raise RuntimeError("yfinance download failed after retries.")
|
87 |
|
|
|
|
|
88 |
# --- Inference Function --- #
|
89 |
def predict_stock():
|
90 |
+
|
91 |
+
with lock:
|
92 |
+
|
93 |
+
# lightweight log print near the top of predict_stock() to verify it's hitting the cache config:
|
94 |
+
print("YFINANCE_NO_CACHE =", os.getenv("YFINANCE_NO_CACHE"))
|
95 |
+
|
96 |
+
# Check for time zone
|
97 |
+
now_est = datetime.now(timezone("US/Eastern"))
|
98 |
+
print("Current Eastern Time:", now_est)
|
99 |
+
print("Trying to fetch data up to:", now_est.strftime('%Y-%m-%d'))
|
100 |
+
|
101 |
+
# --- Clear yfinance cache to get latest volume and price data --- #
|
102 |
+
cache_path = os.path.expanduser("~/.cache/py-yfinance")
|
103 |
+
if os.path.exists(cache_path):
|
104 |
+
print("Clearing yfinance cache...")
|
105 |
+
shutil.rmtree(cache_path)
|
106 |
+
|
107 |
+
Stock = "NVDA"
|
108 |
+
start_date = "2020-01-01"
|
109 |
+
train_end_date = "2024-12-31"
|
110 |
+
#today = datetime.today().strftime('%Y-%m-%d')
|
111 |
+
# Use EST for consistently for today
|
112 |
+
today = now_est.strftime('%Y-%m-%d')
|
113 |
+
|
114 |
+
# Download the full dataset (might contain stale final row)
|
115 |
+
# solves any error with empty dataframes
|
116 |
+
try:
|
117 |
+
full_data = safe_download(
|
118 |
+
tickers=Stock,
|
119 |
+
start=start_date,
|
120 |
+
end=today,
|
121 |
+
interval="1d",
|
122 |
+
auto_adjust=False,
|
123 |
+
actions=False,
|
124 |
+
progress=False,
|
125 |
+
threads=True #<-- for parallel downloads, use True
|
126 |
+
)
|
127 |
+
|
128 |
+
if full_data.empty:
|
129 |
+
print("yfinance returned empty data for:", today)
|
130 |
+
return "Error: Stock data not available at this time. Please try again shortly.", pd.DataFrame()
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
print("yfinance error:", e)
|
134 |
+
return "Error: Could not fetch stock data. Please try again later.", pd.DataFrame()
|
135 |
|
136 |
features = ["Open", "High", "Low", "Close", "Volume"]
|
137 |
|
|
|
195 |
|
196 |
headers = ["Prediction For Date", "Actual Close", "Predicted Close", "% Error", "±MAPE Range"]
|
197 |
table = tabulate(prediction_df.values, headers=headers, tablefmt="plain")
|
198 |
+
|
|
|
199 |
# Start Sanity Checks
|
200 |
+
|
201 |
+
|
202 |
assert not np.any(np.isnan(X_scaled[-1].reshape(1, -1))), "NaNs detected in input!"
|
203 |
assert X_scaled[-1].reshape(1, -1).shape == (1, X_scaled.shape[1]), f"Unexpected shape: {X_scaled[-1].reshape(1, -1).shape}"
|
204 |
print("X_input shape:", X_scaled[-1].reshape(1, -1).shape)
|
|
|
219 |
print("Debug prediction (scaled):", y_debug)
|
220 |
print("Debug prediction (unscaled):", y_debug_unscaled)
|
221 |
|
222 |
+
gc.collect() #<-- garbage collection after predict
|
223 |
+
|
224 |
import hashlib
|
225 |
|
226 |
def md5(fname):
|
227 |
with open(fname, "rb") as f:
|
228 |
return hashlib.md5(f.read()).hexdigest()
|
229 |
|
230 |
+
print("Model MD5 checksum:", md5(os.path.join(model_dir, "NN_CPU_model.keras")))
|
231 |
|
232 |
print(full_data.tail(3))
|
233 |
|
234 |
+
# End Sanitiy Checks
|
|
|
|
|
|
|
|
|
235 |
|
236 |
return summary, prediction_df[["Date", "Actual Close", "Predicted Close", "% Error", "±MAPE Range"]]
|
237 |
|
|
|
251 |
live=True #<-- changed to True for live queuing
|
252 |
)
|
253 |
|
254 |
+
demo.launch()
|
255 |
"""
|
256 |
|
257 |
with gr.Blocks() as demo:
|