Bot_RAG / app.py
pradeepsengarr's picture
Update app.py
b58d6fd verified
import os
import streamlit as st
import fitz # PyMuPDF
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import TextLoader
# --- Configuration ---
st.set_page_config(page_title="πŸ“š RAG PDF Chatbot", layout="wide")
st.title("πŸ“š RAG-based PDF Chatbot")
device = "cpu"
# --- Logging ---
logging.basicConfig(level=logging.INFO)
# --- Load LLM ---
@st.cache_resource
def load_model():
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, max_length=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
return HuggingFacePipeline(pipeline=pipe)
# --- Extract PDF Text ---
def read_pdf(file):
try:
doc = fitz.open(stream=file.read(), filetype="pdf")
text = ""
for page in doc:
text += page.get_text()
return text.strip()
except Exception as e:
logging.error(f"Failed to extract text: {e}")
return ""
# --- Process Answer ---dd
def process_answer(question, full_text):
# Save the full_text to a temporary file
with open("temp_text.txt", "w") as f:
f.write(full_text)
loader = TextLoader("temp_text.txt")
docs = loader.load()
# Chunk the documents with increased size and overlap
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=300)
splits = text_splitter.split_documents(docs)
# Load embeddings
embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-base-en-v1.5")
# Create Chroma in-memory vector store
db = Chroma.from_documents(splits, embedding=embeddings)
retriever = db.as_retriever()
# Set up the model
llm = load_model()
# Create a custom prompt
prompt_template = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a helpful assistant. Carefully analyze the given context and extract direct answers ONLY from it.
Context:
{context}
Question:
{question}
Important Instructions:
- If the question asks for a URL (e.g., LinkedIn link), provide the exact URL as it appears.
- Do NOT summarize or paraphrase.
- If the information is not in the context, say "Not found in the document."
Answer:
""")
# Retrieval QA with custom prompt
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
chain_type_kwargs={"prompt": prompt_template}
)
# Return the answer using the retrieval QA chain
return qa_chain.run(question)
# --- UI Layout ---
with st.sidebar:
st.header("πŸ“„ Upload PDF")
uploaded_file = st.file_uploader("Choose a PDF", type=["pdf"])
# --- Main Interface ---
if uploaded_file:
st.success(f"You uploaded: {uploaded_file.name}")
full_text = read_pdf(uploaded_file)
if full_text:
st.subheader("πŸ“ PDF Preview")
with st.expander("View Extracted Text"):
st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))
st.subheader("πŸ’¬ Ask a Question")
user_question = st.text_input("Type your question about the PDF content")
if user_question:
with st.spinner("Thinking..."):
answer = process_answer(user_question, full_text)
st.markdown("### πŸ€– Answer")
st.write(answer)
with st.sidebar:
st.markdown("---")
st.markdown("**πŸ’‘ Suggestions:**")
st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"")
with st.expander("πŸ’‘ Suggestions", expanded=True):
st.markdown("""
- "Summarize this document"
- "Give a quick summary"
- "What are the main points?"
- "Explain this document in short"
""")
else:
st.error("⚠️ No text could be extracted from the PDF. Try another file.")
else:
st.info("Upload a PDF to begin.")
# import os
# import streamlit as st
# from langchain_community.document_loaders import PyPDFLoader
# from langchain_text_splitters import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import HuggingFaceEmbeddings
# from langchain_community.vectorstores import FAISS
# from langchain.chains import RetrievalQA
# from langchain.prompts import PromptTemplate
# from langchain.llms import HuggingFaceHub
# # Set your Hugging Face API token here
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = "your_hf_token_here"
# # Load and split PDF
# def load_and_split_pdf(uploaded_file):
# with open("temp.pdf", "wb") as f:
# f.write(uploaded_file.read())
# loader = PyPDFLoader("temp.pdf")
# documents = loader.load()
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# chunks = text_splitter.split_documents(documents)
# return chunks
# # Build vectorstore
# def build_vectorstore(chunks):
# embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# vectorstore = FAISS.from_documents(chunks, embedding=embedding_model)
# return vectorstore
# # Load Lamini or other HF model
# def get_llm():
# return HuggingFaceHub(
# repo_id="lamini/lamini-13b-chat",
# model_kwargs={"temperature": 0.2, "max_new_tokens": 512}
# )
# # Create prompt template (optional for better accuracy)
# custom_prompt = PromptTemplate(
# input_variables=["context", "question"],
# template="""
# You are a helpful assistant. Use the following context to answer the question as accurately as possible.
# If the answer is not in the context, respond with "Not found in the document."
# Context:
# {context}
# Question: {question}
# Answer:"""
# )
# # Build QA chain
# def build_qa_chain(vectorstore):
# llm = get_llm()
# qa_chain = RetrievalQA.from_chain_type(
# llm=llm,
# retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
# chain_type_kwargs={"prompt": custom_prompt}
# )
# return qa_chain
# # Streamlit UI
# def main():
# st.set_page_config(page_title="PDF Chatbot", layout="wide")
# st.title("Chat with your PDF")
# uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
# if uploaded_file:
# st.success("PDF uploaded successfully!")
# with st.spinner("Processing PDF..."):
# chunks = load_and_split_pdf(uploaded_file)
# vectorstore = build_vectorstore(chunks)
# qa_chain = build_qa_chain(vectorstore)
# st.success("Ready to chat!")
# user_question = st.text_input("Ask a question based on the PDF:")
# if user_question:
# with st.spinner("Generating answer..."):
# result = qa_chain.run(user_question)
# st.markdown("**Answer:**")
# st.write(result)
# if __name__ == "__main__":
# main()