Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import fitz # PyMuPDF | |
import logging | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.embeddings import SentenceTransformerEmbeddings | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.chains import RetrievalQA | |
from langchain.prompts import PromptTemplate | |
from langchain_community.document_loaders import TextLoader | |
# --- Configuration --- | |
st.set_page_config(page_title="π RAG PDF Chatbot", layout="wide") | |
st.title("π RAG-based PDF Chatbot") | |
device = "cpu" | |
# --- Logging --- | |
logging.basicConfig(level=logging.INFO) | |
# --- Load LLM --- | |
def load_model(): | |
checkpoint = "MBZUAI/LaMini-T5-738M" | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) | |
pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, max_length=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95) | |
return HuggingFacePipeline(pipeline=pipe) | |
# --- Extract PDF Text --- | |
def read_pdf(file): | |
try: | |
doc = fitz.open(stream=file.read(), filetype="pdf") | |
text = "" | |
for page in doc: | |
text += page.get_text() | |
return text.strip() | |
except Exception as e: | |
logging.error(f"Failed to extract text: {e}") | |
return "" | |
# --- Process Answer ---dd | |
def process_answer(question, full_text): | |
# Save the full_text to a temporary file | |
with open("temp_text.txt", "w") as f: | |
f.write(full_text) | |
loader = TextLoader("temp_text.txt") | |
docs = loader.load() | |
# Chunk the documents with increased size and overlap | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=300) | |
splits = text_splitter.split_documents(docs) | |
# Load embeddings | |
embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-base-en-v1.5") | |
# Create Chroma in-memory vector store | |
db = Chroma.from_documents(splits, embedding=embeddings) | |
retriever = db.as_retriever() | |
# Set up the model | |
llm = load_model() | |
# Create a custom prompt | |
prompt_template = PromptTemplate( | |
input_variables=["context", "question"], | |
template=""" | |
You are a helpful assistant. Carefully analyze the given context and extract direct answers ONLY from it. | |
Context: | |
{context} | |
Question: | |
{question} | |
Important Instructions: | |
- If the question asks for a URL (e.g., LinkedIn link), provide the exact URL as it appears. | |
- Do NOT summarize or paraphrase. | |
- If the information is not in the context, say "Not found in the document." | |
Answer: | |
""") | |
# Retrieval QA with custom prompt | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
retriever=retriever, | |
chain_type="stuff", | |
chain_type_kwargs={"prompt": prompt_template} | |
) | |
# Return the answer using the retrieval QA chain | |
return qa_chain.run(question) | |
# --- UI Layout --- | |
with st.sidebar: | |
st.header("π Upload PDF") | |
uploaded_file = st.file_uploader("Choose a PDF", type=["pdf"]) | |
# --- Main Interface --- | |
if uploaded_file: | |
st.success(f"You uploaded: {uploaded_file.name}") | |
full_text = read_pdf(uploaded_file) | |
if full_text: | |
st.subheader("π PDF Preview") | |
with st.expander("View Extracted Text"): | |
st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else "")) | |
st.subheader("π¬ Ask a Question") | |
user_question = st.text_input("Type your question about the PDF content") | |
if user_question: | |
with st.spinner("Thinking..."): | |
answer = process_answer(user_question, full_text) | |
st.markdown("### π€ Answer") | |
st.write(answer) | |
with st.sidebar: | |
st.markdown("---") | |
st.markdown("**π‘ Suggestions:**") | |
st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"") | |
with st.expander("π‘ Suggestions", expanded=True): | |
st.markdown(""" | |
- "Summarize this document" | |
- "Give a quick summary" | |
- "What are the main points?" | |
- "Explain this document in short" | |
""") | |
else: | |
st.error("β οΈ No text could be extracted from the PDF. Try another file.") | |
else: | |
st.info("Upload a PDF to begin.") | |
# import os | |
# import streamlit as st | |
# from langchain_community.document_loaders import PyPDFLoader | |
# from langchain_text_splitters import RecursiveCharacterTextSplitter | |
# from langchain_community.embeddings import HuggingFaceEmbeddings | |
# from langchain_community.vectorstores import FAISS | |
# from langchain.chains import RetrievalQA | |
# from langchain.prompts import PromptTemplate | |
# from langchain.llms import HuggingFaceHub | |
# # Set your Hugging Face API token here | |
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = "your_hf_token_here" | |
# # Load and split PDF | |
# def load_and_split_pdf(uploaded_file): | |
# with open("temp.pdf", "wb") as f: | |
# f.write(uploaded_file.read()) | |
# loader = PyPDFLoader("temp.pdf") | |
# documents = loader.load() | |
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) | |
# chunks = text_splitter.split_documents(documents) | |
# return chunks | |
# # Build vectorstore | |
# def build_vectorstore(chunks): | |
# embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
# vectorstore = FAISS.from_documents(chunks, embedding=embedding_model) | |
# return vectorstore | |
# # Load Lamini or other HF model | |
# def get_llm(): | |
# return HuggingFaceHub( | |
# repo_id="lamini/lamini-13b-chat", | |
# model_kwargs={"temperature": 0.2, "max_new_tokens": 512} | |
# ) | |
# # Create prompt template (optional for better accuracy) | |
# custom_prompt = PromptTemplate( | |
# input_variables=["context", "question"], | |
# template=""" | |
# You are a helpful assistant. Use the following context to answer the question as accurately as possible. | |
# If the answer is not in the context, respond with "Not found in the document." | |
# Context: | |
# {context} | |
# Question: {question} | |
# Answer:""" | |
# ) | |
# # Build QA chain | |
# def build_qa_chain(vectorstore): | |
# llm = get_llm() | |
# qa_chain = RetrievalQA.from_chain_type( | |
# llm=llm, | |
# retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}), | |
# chain_type_kwargs={"prompt": custom_prompt} | |
# ) | |
# return qa_chain | |
# # Streamlit UI | |
# def main(): | |
# st.set_page_config(page_title="PDF Chatbot", layout="wide") | |
# st.title("Chat with your PDF") | |
# uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"]) | |
# if uploaded_file: | |
# st.success("PDF uploaded successfully!") | |
# with st.spinner("Processing PDF..."): | |
# chunks = load_and_split_pdf(uploaded_file) | |
# vectorstore = build_vectorstore(chunks) | |
# qa_chain = build_qa_chain(vectorstore) | |
# st.success("Ready to chat!") | |
# user_question = st.text_input("Ask a question based on the PDF:") | |
# if user_question: | |
# with st.spinner("Generating answer..."): | |
# result = qa_chain.run(user_question) | |
# st.markdown("**Answer:**") | |
# st.write(result) | |
# if __name__ == "__main__": | |
# main() | |