File size: 7,507 Bytes
b58d6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948c6d1
b58d6fd
 
948c6d1
b58d6fd
 
948c6d1
b58d6fd
 
 
 
948c6d1
b58d6fd
 
948c6d1
0b64652
b58d6fd
 
 
 
 
 
 
c46f62c
b58d6fd
 
c46f62c
b58d6fd
 
 
 
c46f62c
b58d6fd
 
 
 
c46f62c
b58d6fd
 
 
 
c46f62c
b58d6fd
 
c46f62c
b58d6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd88a48
 
b58d6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7afdcd2
b58d6fd
 
 
 
 
 
6e1c9c8
b58d6fd
 
6e1c9c8
b58d6fd
6e1c9c8
b58d6fd
 
6e1c9c8
b58d6fd
 
 
 
 
 
 
 
 
6e1c9c8
b58d6fd
 
 
 
7afdcd2
b58d6fd
7afdcd2
b58d6fd
 
 
 
 
 
 
7afdcd2
b58d6fd
 
 
 
 
 
7afdcd2
b58d6fd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import streamlit as st
import fitz  # PyMuPDF
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import TextLoader

# --- Configuration ---
st.set_page_config(page_title="πŸ“š RAG PDF Chatbot", layout="wide")
st.title("πŸ“š RAG-based PDF Chatbot")
device = "cpu"

# --- Logging ---
logging.basicConfig(level=logging.INFO)

# --- Load LLM ---
@st.cache_resource
def load_model():
    checkpoint = "MBZUAI/LaMini-T5-738M"
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
    model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
    pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, max_length=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
    return HuggingFacePipeline(pipeline=pipe)

# --- Extract PDF Text ---
def read_pdf(file):
    try:
        doc = fitz.open(stream=file.read(), filetype="pdf")
        text = ""
        for page in doc:
            text += page.get_text()
        return text.strip()
    except Exception as e:
        logging.error(f"Failed to extract text: {e}")
        return ""

# --- Process Answer ---dd
def process_answer(question, full_text):
    # Save the full_text to a temporary file
    with open("temp_text.txt", "w") as f:
        f.write(full_text)

    loader = TextLoader("temp_text.txt")
    docs = loader.load()

    # Chunk the documents with increased size and overlap
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=300)
    splits = text_splitter.split_documents(docs)

    # Load embeddings
    embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-base-en-v1.5")

    # Create Chroma in-memory vector store
    db = Chroma.from_documents(splits, embedding=embeddings)
    retriever = db.as_retriever()

    # Set up the model
    llm = load_model()

    # Create a custom prompt
    prompt_template = PromptTemplate(
    input_variables=["context", "question"],
    template="""
    You are a helpful assistant. Carefully analyze the given context and extract direct answers ONLY from it.
     
    Context:
    {context}
     
    Question:
    {question}
     
    Important Instructions:
    - If the question asks for a URL (e.g., LinkedIn link), provide the exact URL as it appears.
    - Do NOT summarize or paraphrase.
    - If the information is not in the context, say "Not found in the document."
     
    Answer:
    """)
     

    # Retrieval QA with custom prompt
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        retriever=retriever,
        chain_type="stuff",
        chain_type_kwargs={"prompt": prompt_template}
    )

    # Return the answer using the retrieval QA chain
    return qa_chain.run(question)

# --- UI Layout ---
with st.sidebar:
    st.header("πŸ“„ Upload PDF")
    uploaded_file = st.file_uploader("Choose a PDF", type=["pdf"])

# --- Main Interface ---
if uploaded_file:
    st.success(f"You uploaded: {uploaded_file.name}")
    full_text = read_pdf(uploaded_file)

    if full_text:
        st.subheader("πŸ“ PDF Preview")
        with st.expander("View Extracted Text"):
            st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))

        st.subheader("πŸ’¬ Ask a Question")
        user_question = st.text_input("Type your question about the PDF content")

        if user_question:
            with st.spinner("Thinking..."):
                answer = process_answer(user_question, full_text)
                st.markdown("### πŸ€– Answer")
                st.write(answer)

        with st.sidebar:
            st.markdown("---")
            st.markdown("**πŸ’‘ Suggestions:**")
            st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"") 
        with st.expander("πŸ’‘ Suggestions", expanded=True):
            st.markdown("""
            - "Summarize this document"
            - "Give a quick summary"
            - "What are the main points?"
            - "Explain this document in short"
            """)

    else:
        st.error("⚠️ No text could be extracted from the PDF. Try another file.")
else:
    st.info("Upload a PDF to begin.")


# import os
# import streamlit as st
# from langchain_community.document_loaders import PyPDFLoader
# from langchain_text_splitters import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import HuggingFaceEmbeddings
# from langchain_community.vectorstores import FAISS
# from langchain.chains import RetrievalQA
# from langchain.prompts import PromptTemplate
# from langchain.llms import HuggingFaceHub

# # Set your Hugging Face API token here
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = "your_hf_token_here"

# # Load and split PDF
# def load_and_split_pdf(uploaded_file):
#     with open("temp.pdf", "wb") as f:
#         f.write(uploaded_file.read())
#     loader = PyPDFLoader("temp.pdf")
#     documents = loader.load()

#     text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
#     chunks = text_splitter.split_documents(documents)
#     return chunks

# # Build vectorstore
# def build_vectorstore(chunks):
#     embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
#     vectorstore = FAISS.from_documents(chunks, embedding=embedding_model)
#     return vectorstore

# # Load Lamini or other HF model
# def get_llm():
#     return HuggingFaceHub(
#         repo_id="lamini/lamini-13b-chat",
#         model_kwargs={"temperature": 0.2, "max_new_tokens": 512}
#     )

# # Create prompt template (optional for better accuracy)
# custom_prompt = PromptTemplate(
#     input_variables=["context", "question"],
#     template="""
# You are a helpful assistant. Use the following context to answer the question as accurately as possible.
# If the answer is not in the context, respond with "Not found in the document."

# Context:
# {context}

# Question: {question}

# Answer:"""
# )

# # Build QA chain
# def build_qa_chain(vectorstore):
#     llm = get_llm()
#     qa_chain = RetrievalQA.from_chain_type(
#         llm=llm,
#         retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
#         chain_type_kwargs={"prompt": custom_prompt}
#     )
#     return qa_chain

# # Streamlit UI
# def main():
#     st.set_page_config(page_title="PDF Chatbot", layout="wide")
#     st.title("Chat with your PDF")

#     uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])

#     if uploaded_file:
#         st.success("PDF uploaded successfully!")
#         with st.spinner("Processing PDF..."):
#             chunks = load_and_split_pdf(uploaded_file)
#             vectorstore = build_vectorstore(chunks)
#             qa_chain = build_qa_chain(vectorstore)
#         st.success("Ready to chat!")

#         user_question = st.text_input("Ask a question based on the PDF:")
#         if user_question:
#             with st.spinner("Generating answer..."):
#                 result = qa_chain.run(user_question)
#                 st.markdown("**Answer:**")
#                 st.write(result)

# if __name__ == "__main__":
#     main()