Spaces:
Sleeping
Sleeping
File size: 7,507 Bytes
b58d6fd 948c6d1 b58d6fd 948c6d1 b58d6fd 948c6d1 b58d6fd 948c6d1 b58d6fd 948c6d1 0b64652 b58d6fd c46f62c b58d6fd c46f62c b58d6fd c46f62c b58d6fd c46f62c b58d6fd c46f62c b58d6fd c46f62c b58d6fd cd88a48 b58d6fd 7afdcd2 b58d6fd 6e1c9c8 b58d6fd 6e1c9c8 b58d6fd 6e1c9c8 b58d6fd 6e1c9c8 b58d6fd 6e1c9c8 b58d6fd 7afdcd2 b58d6fd 7afdcd2 b58d6fd 7afdcd2 b58d6fd 7afdcd2 b58d6fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import os
import streamlit as st
import fitz # PyMuPDF
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import TextLoader
# --- Configuration ---
st.set_page_config(page_title="π RAG PDF Chatbot", layout="wide")
st.title("π RAG-based PDF Chatbot")
device = "cpu"
# --- Logging ---
logging.basicConfig(level=logging.INFO)
# --- Load LLM ---
@st.cache_resource
def load_model():
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, max_length=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
return HuggingFacePipeline(pipeline=pipe)
# --- Extract PDF Text ---
def read_pdf(file):
try:
doc = fitz.open(stream=file.read(), filetype="pdf")
text = ""
for page in doc:
text += page.get_text()
return text.strip()
except Exception as e:
logging.error(f"Failed to extract text: {e}")
return ""
# --- Process Answer ---dd
def process_answer(question, full_text):
# Save the full_text to a temporary file
with open("temp_text.txt", "w") as f:
f.write(full_text)
loader = TextLoader("temp_text.txt")
docs = loader.load()
# Chunk the documents with increased size and overlap
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=300)
splits = text_splitter.split_documents(docs)
# Load embeddings
embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-base-en-v1.5")
# Create Chroma in-memory vector store
db = Chroma.from_documents(splits, embedding=embeddings)
retriever = db.as_retriever()
# Set up the model
llm = load_model()
# Create a custom prompt
prompt_template = PromptTemplate(
input_variables=["context", "question"],
template="""
You are a helpful assistant. Carefully analyze the given context and extract direct answers ONLY from it.
Context:
{context}
Question:
{question}
Important Instructions:
- If the question asks for a URL (e.g., LinkedIn link), provide the exact URL as it appears.
- Do NOT summarize or paraphrase.
- If the information is not in the context, say "Not found in the document."
Answer:
""")
# Retrieval QA with custom prompt
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
chain_type_kwargs={"prompt": prompt_template}
)
# Return the answer using the retrieval QA chain
return qa_chain.run(question)
# --- UI Layout ---
with st.sidebar:
st.header("π Upload PDF")
uploaded_file = st.file_uploader("Choose a PDF", type=["pdf"])
# --- Main Interface ---
if uploaded_file:
st.success(f"You uploaded: {uploaded_file.name}")
full_text = read_pdf(uploaded_file)
if full_text:
st.subheader("π PDF Preview")
with st.expander("View Extracted Text"):
st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))
st.subheader("π¬ Ask a Question")
user_question = st.text_input("Type your question about the PDF content")
if user_question:
with st.spinner("Thinking..."):
answer = process_answer(user_question, full_text)
st.markdown("### π€ Answer")
st.write(answer)
with st.sidebar:
st.markdown("---")
st.markdown("**π‘ Suggestions:**")
st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"")
with st.expander("π‘ Suggestions", expanded=True):
st.markdown("""
- "Summarize this document"
- "Give a quick summary"
- "What are the main points?"
- "Explain this document in short"
""")
else:
st.error("β οΈ No text could be extracted from the PDF. Try another file.")
else:
st.info("Upload a PDF to begin.")
# import os
# import streamlit as st
# from langchain_community.document_loaders import PyPDFLoader
# from langchain_text_splitters import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import HuggingFaceEmbeddings
# from langchain_community.vectorstores import FAISS
# from langchain.chains import RetrievalQA
# from langchain.prompts import PromptTemplate
# from langchain.llms import HuggingFaceHub
# # Set your Hugging Face API token here
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = "your_hf_token_here"
# # Load and split PDF
# def load_and_split_pdf(uploaded_file):
# with open("temp.pdf", "wb") as f:
# f.write(uploaded_file.read())
# loader = PyPDFLoader("temp.pdf")
# documents = loader.load()
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# chunks = text_splitter.split_documents(documents)
# return chunks
# # Build vectorstore
# def build_vectorstore(chunks):
# embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# vectorstore = FAISS.from_documents(chunks, embedding=embedding_model)
# return vectorstore
# # Load Lamini or other HF model
# def get_llm():
# return HuggingFaceHub(
# repo_id="lamini/lamini-13b-chat",
# model_kwargs={"temperature": 0.2, "max_new_tokens": 512}
# )
# # Create prompt template (optional for better accuracy)
# custom_prompt = PromptTemplate(
# input_variables=["context", "question"],
# template="""
# You are a helpful assistant. Use the following context to answer the question as accurately as possible.
# If the answer is not in the context, respond with "Not found in the document."
# Context:
# {context}
# Question: {question}
# Answer:"""
# )
# # Build QA chain
# def build_qa_chain(vectorstore):
# llm = get_llm()
# qa_chain = RetrievalQA.from_chain_type(
# llm=llm,
# retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
# chain_type_kwargs={"prompt": custom_prompt}
# )
# return qa_chain
# # Streamlit UI
# def main():
# st.set_page_config(page_title="PDF Chatbot", layout="wide")
# st.title("Chat with your PDF")
# uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
# if uploaded_file:
# st.success("PDF uploaded successfully!")
# with st.spinner("Processing PDF..."):
# chunks = load_and_split_pdf(uploaded_file)
# vectorstore = build_vectorstore(chunks)
# qa_chain = build_qa_chain(vectorstore)
# st.success("Ready to chat!")
# user_question = st.text_input("Ask a question based on the PDF:")
# if user_question:
# with st.spinner("Generating answer..."):
# result = qa_chain.run(user_question)
# st.markdown("**Answer:**")
# st.write(result)
# if __name__ == "__main__":
# main()
|