Bot_RAG / app.py
pradeepsengarr's picture
Update app.py
b38d37f verified
raw
history blame
24.8 kB
# import os
# import logging
# import math
# import streamlit as st
# import fitz # PyMuPDF
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from langchain_community.document_loaders import PDFMinerLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# # Define global variables
# device = 'cpu'
# persist_directory = "db"
# uploaded_files_dir = "uploaded_files"
# # Streamlit app configuration
# st.set_page_config(page_title="Audit Assistant", layout="wide")
# st.title("Audit Assistant")
# # Load the model
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# # Helper Functions
# def extract_text_from_pdf(file_path):
# """Extract text from a PDF using PyMuPDF (fitz)."""
# try:
# doc = fitz.open(file_path)
# text = ""
# for page_num in range(doc.page_count):
# page = doc.load_page(page_num)
# text += page.get_text("text")
# return text
# except Exception as e:
# logging.error(f"Error reading PDF {file_path}: {e}")
# return None
# def data_ingestion():
# """Function to load PDFs and create embeddings with improved error handling and efficiency."""
# try:
# logging.info("Starting data ingestion")
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# documents = []
# for filename in os.listdir(uploaded_files_dir):
# if filename.endswith(".pdf"):
# file_path = os.path.join(uploaded_files_dir, filename)
# logging.info(f"Processing file: {file_path}")
# try:
# loader = PDFMinerLoader(file_path)
# loaded_docs = loader.load()
# if not loaded_docs:
# logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
# continue
# for doc in loaded_docs:
# if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
# documents.append(doc)
# else:
# logging.warning(f"Skipping invalid document structure in {file_path}")
# except ValueError as e:
# logging.error(f"Skipping {file_path}: {str(e)}")
# continue
# if not documents:
# logging.error("No valid documents found to process.")
# return
# logging.info(f"Total valid documents: {len(documents)}")
# # Proceed with splitting and embedding documents
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# texts = text_splitter.split_documents(documents)
# logging.info(f"Total text chunks created: {len(texts)}")
# if not texts:
# logging.error("No valid text chunks to create embeddings.")
# return
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# # Proceed to split and embed the documents
# MAX_BATCH_SIZE = 5461
# total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
# logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
# db = None
# for i in range(total_batches):
# batch_start = i * MAX_BATCH_SIZE
# batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
# text_batch = texts[batch_start:batch_end]
# logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
# if db is None:
# db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
# else:
# db.add_documents(text_batch)
# db.persist()
# logging.info("Data ingestion completed successfully")
# except Exception as e:
# logging.error(f"Error during data ingestion: {str(e)}")
# raise
# def llm_pipeline():
# """Set up the language model pipeline."""
# logging.info("Setting up LLM pipeline")
# pipe = pipeline(
# 'text2text-generation',
# model=base_model,
# tokenizer=tokenizer,
# max_length=256,
# do_sample=True,
# temperature=0.3,
# top_p=0.95,
# device=device
# )
# local_llm = HuggingFacePipeline(pipeline=pipe)
# logging.info("LLM pipeline setup complete")
# return local_llm
# def qa_llm():
# """Set up the question-answering chain."""
# logging.info("Setting up QA model")
# llm = llm_pipeline()
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# retriever = db.as_retriever() # Set up the retriever for the vector store
# qa = RetrievalQA.from_chain_type(
# llm=llm,
# chain_type="stuff",
# retriever=retriever,
# return_source_documents=True
# )
# logging.info("QA model setup complete")
# return qa
# def process_answer(user_question):
# """Generate an answer to the user’s question."""
# try:
# logging.info("Processing user question")
# qa = qa_llm()
# tailored_prompt = f"""
# You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits.
# Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures,
# and accounting standards based on the provided PDF documents.
# Please respond effectively and refer to the relevant standards and policies whenever applicable.
# User question: {user_question}
# """
# generated_text = qa({"query": tailored_prompt})
# answer = generated_text['result']
# if "not provide" in answer or "no information" in answer:
# return "The document does not provide sufficient information to answer your question."
# logging.info("Answer generated successfully")
# return answer
# except Exception as e:
# logging.error(f"Error during answer generation: {str(e)}")
# return "Error processing the question."
# # Streamlit UI Setup
# st.sidebar.header("File Upload")
# uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
# if uploaded_files:
# # Save uploaded files
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# for uploaded_file in uploaded_files:
# file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
# with open(file_path, "wb") as f:
# f.write(uploaded_file.getbuffer())
# st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
# # Run data ingestion when files are uploaded
# data_ingestion()
# # Display UI for Q&A
# st.header("Ask a Question")
# user_question = st.text_input("Enter your question here:")
# if user_question:
# answer = process_answer(user_question)
# st.write(answer)
# else:
# st.sidebar.info("Upload PDF files to get started!")
# # -------this is the second code!!!
# import os
# import logging
# import math
# import streamlit as st
# import fitz # PyMuPDF
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# # from langchain_community.document_loaders import PDFMinerLoader
# from langchain_community.document_loaders import PyMuPDFLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA
# device = 'cpu'
# persist_directory = "db"
# uploaded_files_dir = "uploaded_files"
# logging.basicConfig(level=logging.INFO)
# # for main Page Setup
# st.set_page_config(page_title="RAG Chatbot", layout="wide")
# st.title("📚 RAG-based PDF Assistant")
# # Load my model
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# # ------------------------------- #
# def extract_outline_from_pdf(path):
# try:
# doc = fitz.open(path)
# outline_text = ""
# for page_num in range(len(doc)):
# page = doc[page_num]
# outline_text += f"### Page {page_num+1}:\n{page.get_text('text')[:500]}\n---\n"
# return outline_text if outline_text else "No preview available."
# except Exception as e:
# return f"Could not preview PDF: {e}"
# def data_ingestion():
# """Load PDFs, validate content, and generate embeddings."""
# try:
# logging.info("Starting data ingestion")
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# documents = []
# for filename in os.listdir(uploaded_files_dir):
# if filename.endswith(".pdf"):
# file_path = os.path.join(uploaded_files_dir, filename)
# logging.info(f"Processing file: {file_path}")
# try:
# loader = PyMuPDFLoader(file_path)
# loaded_docs = loader.load()
# # Check if any content exists in loaded_docs
# if not loaded_docs or len(loaded_docs[0].page_content.strip()) == 0:
# logging.warning(f"No readable text found in {file_path}. Might be a scanned image or unsupported format.")
# continue
# for doc in loaded_docs:
# if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
# documents.append(doc)
# else:
# logging.warning(f"Skipping invalid document structure in {file_path}")
# except Exception as e:
# logging.error(f"Skipping {file_path}: {str(e)}")
# continue
# if not documents:
# logging.error("No valid documents found to process.")
# return
# logging.info(f"Total valid documents: {len(documents)}")
# # Proceed with splitting and embedding documents
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# texts = text_splitter.split_documents(documents)
# logging.info(f"Total text chunks created: {len(texts)}")
# if not texts:
# logging.error("No valid text chunks to create embeddings.")
# return
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# MAX_BATCH_SIZE = 5461
# total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
# logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
# db = None
# for i in range(total_batches):
# batch_start = i * MAX_BATCH_SIZE
# batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
# text_batch = texts[batch_start:batch_end]
# logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
# if db is None:
# db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
# else:
# db.add_documents(text_batch)
# db.persist()
# logging.info("Data ingestion completed successfully")
# except Exception as e:
# logging.error(f"Error during data ingestion: {str(e)}")
# raise
# def llm_pipeline():
# pipe = pipeline(
# 'text2text-generation',
# model=base_model,
# tokenizer=tokenizer,
# max_length=256,
# do_sample=True,
# temperature=0.3,
# top_p=0.95,
# device=device
# )
# return HuggingFacePipeline(pipeline=pipe)
# def qa_llm():
# llm = llm_pipeline()
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# retriever = db.as_retriever()
# return RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
# def process_answer(user_question):
# """Generate an answer to the user’s question using a general RAG-based prompt."""
# try:
# logging.info("Processing user question")
# qa = qa_llm() # Set up the retrieval-based QA chain
# # Generalized, flexible prompt for any kind of PDF (resume, legal doc, etc.)
# tailored_prompt = f"""
# You are an intelligent and helpful AI assistant that provides answers strictly based on the provided document contents.
# If the question cannot be answered using the documents, say: 'The document does not contain this information.'
# Otherwise, respond clearly and concisely with relevant and factual details from the PDF.
# Question: {user_question}
# """
# generated_text = qa({"query": tailored_prompt})
# answer = generated_text['result']
# # Add a safeguard for hallucinated answers
# if "not provide" in answer.lower() or "no information" in answer.lower() or len(answer.strip()) < 10:
# return "The document does not contain this information."
# logging.info("Answer generated successfully")
# return answer
# except Exception as e:
# logging.error(f"Error during answer generation: {str(e)}")
# return "Sorry, something went wrong while processing your question."
# # ---------------- STREAMLIT UI ---------------- #
# # Sidebar Upload
# st.sidebar.header("📤 Upload PDF Files")
# uploaded_files = st.sidebar.file_uploader("Select one or more PDF files", type="pdf", accept_multiple_files=True)
# if uploaded_files:
# if not os.path.exists(uploaded_files_dir):
# os.makedirs(uploaded_files_dir)
# for file in uploaded_files:
# path = os.path.join(uploaded_files_dir, file.name)
# with open(path, "wb") as f:
# f.write(file.getbuffer())
# st.sidebar.success(f"{len(uploaded_files)} file(s) uploaded.")
# # Display previews
# st.subheader("📄 Uploaded PDF Previews")
# for file in uploaded_files:
# with st.expander(file.name):
# st.text(extract_outline_from_pdf(os.path.join(uploaded_files_dir, file.name)))
# # Trigger ingestion
# with st.spinner("🔄 Ingesting uploaded documents..."):
# data_ingestion()
# # Ask a question
# st.header("❓ Ask a Question from Your Documents")
# user_input = st.text_input("Enter your question:")
# if user_input:
# with st.spinner("💬 Generating response..."):
# response = process_answer(user_input)
# st.success(response)
# else:
# st.sidebar.info("Upload PDFs to begin your QA journey.")
import os
import logging
import math
import streamlit as st
import fitz # PyMuPDF
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_community.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
# Set up logging
logging.basicConfig(level=logging.INFO)
# Define global variables
device = 'cpu'
persist_directory = "db"
uploaded_files_dir = "uploaded_files"
# Streamlit app configuration
st.set_page_config(page_title="RAG-based Chatbot", layout="wide")
st.title("RAG-based Chatbot")
# Load the model
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# Helper Functions
def extract_text_from_pdf(file_path):
"""Extract full text from a PDF using PyMuPDF (fitz)."""
try:
doc = fitz.open(file_path)
text = ""
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
text += page.get_text("text")
return text
except Exception as e:
logging.error(f"Error reading PDF {file_path}: {e}")
return None
def data_ingestion():
"""Function to load PDFs and create embeddings with improved error handling and efficiency."""
try:
logging.info("Starting data ingestion")
if not os.path.exists(uploaded_files_dir):
os.makedirs(uploaded_files_dir)
documents = []
for filename in os.listdir(uploaded_files_dir):
if filename.endswith(".pdf"):
file_path = os.path.join(uploaded_files_dir, filename)
logging.info(f"Processing file: {file_path}")
try:
loader = PDFMinerLoader(file_path)
loaded_docs = loader.load()
if not loaded_docs:
logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
continue
for doc in loaded_docs:
if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
documents.append(doc)
else:
logging.warning(f"Skipping invalid document structure in {file_path}")
except ValueError as e:
logging.error(f"Skipping {file_path}: {str(e)}")
continue
if not documents:
logging.error("No valid documents found to process.")
return
logging.info(f"Total valid documents: {len(documents)}")
# Proceed with splitting and embedding documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
logging.info(f"Total text chunks created: {len(texts)}")
if not texts:
logging.error("No valid text chunks to create embeddings.")
return
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Proceed to split and embed the documents
MAX_BATCH_SIZE = 5461
total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")
db = None
for i in range(total_batches):
batch_start = i * MAX_BATCH_SIZE
batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
text_batch = texts[batch_start:batch_end]
logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")
if db is None:
db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
else:
db.add_documents(text_batch)
db.persist()
logging.info("Data ingestion completed successfully")
except Exception as e:
logging.error(f"Error during data ingestion: {str(e)}")
raise
def llm_pipeline():
"""Set up the language model pipeline."""
logging.info("Setting up LLM pipeline")
pipe = pipeline(
'text2text-generation',
model=base_model,
tokenizer=tokenizer,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95,
device=device
)
local_llm = HuggingFacePipeline(pipeline=pipe)
logging.info("LLM pipeline setup complete")
return local_llm
def qa_llm():
"""Set up the question-answering chain."""
logging.info("Setting up QA model")
llm = llm_pipeline()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
retriever = db.as_retriever() # Set up the retriever for the vector store
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
logging.info("QA model setup complete")
return qa
def process_answer(user_question, full_text):
"""Generate an answer to the user’s question or summarize the PDF content."""
try:
logging.info("Processing user question")
# Check if the question is related to summarization
if "summarize" in user_question.lower() or "summary" in user_question.lower():
tailored_prompt = f"""
Please provide a summary of the following content extracted from the PDF:
{full_text}
"""
else:
# Regular Q&A with context from the uploaded PDF
tailored_prompt = f"""
You are an expert chatbot designed to assist with any topic, providing accurate and detailed answers based on the provided PDFs.
Your goal is to deliver the most relevant information and resources based on the question asked.
User question: {user_question}
Content from the uploaded document: {full_text}
"""
# Pass the tailored prompt to the question-answering chain (QA) system
qa = qa_llm() # Call your QA LLM setup
generated_text = qa({"query": tailored_prompt})
answer = generated_text['result']
# If the answer contains certain fallback phrases, return a default message
if "not provide" in answer or "no information" in answer:
return "The document does not provide sufficient information to answer your question."
logging.info("Answer generated successfully")
return answer
except Exception as e:
logging.error(f"Error during answer generation: {str(e)}")
return "Error processing the question."
# Streamlit UI Setup
st.sidebar.header("File Upload")
uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
if uploaded_files:
# Save uploaded files and extract their text
if not os.path.exists(uploaded_files_dir):
os.makedirs(uploaded_files_dir)
for uploaded_file in uploaded_files:
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")
# Show the uploaded files' names
st.subheader("Uploaded PDF(s):")
for uploaded_file in uploaded_files:
st.write(uploaded_file.name)
# Display PDF preview link if possible
with open(file_path, "rb") as f:
file_bytes = f.read()
st.download_button(
label="Download PDF",
data=file_bytes,
file_name=uploaded_file.name,
mime="application/pdf",
)
# Extract and display the full text from the PDF
st.subheader("Full Text from the PDF:")
full_text = extract_text_from_pdf(file_path)
if full_text:
st.text_area("PDF Text", full_text, height=300)
else:
st.warning("Failed to extract text from this PDF.")
# # Generate summary option
# if st.button("Generate Summary of Document"):
# st.write("Summary: [Provide the generated summary here]")
# Run data ingestion when files are uploaded
data_ingestion()
# Display UI for Q&A
st.header("Ask a Question")
user_question = st.text_input("Enter your question here:")
if user_question:
answer = process_answer(user_question)
st.write(answer)
else:
st.sidebar.info("Upload PDF files to get started!")