Bot_RAG / app.py
pradeepsengarr's picture
Update app.py
0b64652 verified
raw
history blame
4.22 kB
import os
import streamlit as st
import fitz # PyMuPDF
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import TextLoader
# --- Configuration ---
st.set_page_config(page_title="πŸ“š RAG PDF Chatbot", layout="wide")
st.title("πŸ“š RAG-based PDF Chatbot")
device = "cpu"
# --- Logging ---
logging.basicConfig(level=logging.INFO)
# --- Load LLM ---
@st.cache_resource
def load_model():
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, max_length=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
return HuggingFacePipeline(pipeline=pipe)
# --- Extract PDF Text ---
def read_pdf(file):
try:
doc = fitz.open(stream=file.read(), filetype="pdf")
text = ""
for page in doc:
text += page.get_text()
return text.strip()
except Exception as e:
logging.error(f"Failed to extract text: {e}")
return ""
# --- Process Answer ---
def process_answer(question, full_text):
# Save the full_text to a temporary file
with open("temp_text.txt", "w") as f:
f.write(full_text)
loader = TextLoader("temp_text.txt")
docs = loader.load()
# Chunk the documents with increased size and overlap
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=300)
splits = text_splitter.split_documents(docs)
# Load embeddings
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Create Chroma in-memory vector store
db = Chroma.from_documents(splits, embedding=embeddings)
retriever = db.as_retriever()
# Set up the model
llm = load_model()
# Create a custom prompt
prompt_template = PromptTemplate.from_template("""
You are a helpful assistant. Use the following context to answer the question as accurately and thoroughly as possible.
Context: {context}
Question: {question}
Answer in detail:""")
# Retrieval QA with custom prompt
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
chain_type_kwargs={"prompt": prompt_template}
)
# Return the answer using the retrieval QA chain
return qa_chain.run(question)
# --- UI Layout ---
with st.sidebar:
st.header("πŸ“„ Upload PDF")
uploaded_file = st.file_uploader("Choose a PDF", type=["pdf"])
# --- Main Interface ---
if uploaded_file:
st.success(f"You uploaded: {uploaded_file.name}")
full_text = read_pdf(uploaded_file)
if full_text:
st.subheader("πŸ“ PDF Preview")
with st.expander("View Extracted Text"):
st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))
st.subheader("πŸ’¬ Ask a Question")
user_question = st.text_input("Type your question about the PDF content")
if user_question:
with st.spinner("Thinking..."):
answer = process_answer(user_question, full_text)
st.markdown("### πŸ€– Answer")
st.write(answer)
with st.sidebar:
st.markdown("---")
st.markdown("**πŸ’‘ Suggestions:**")
st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"")
with st.expander("πŸ’‘ Suggestions", expanded=True):
st.markdown("""
- "Summarize this document"
- "Give a quick summary"
- "What are the main points?"
- "Explain this document in short"
""")
else:
st.error("⚠️ No text could be extracted from the PDF. Try another file.")
else:
st.info("Upload a PDF to begin.")