Spaces:
Sleeping
Sleeping
import warnings | |
warnings.simplefilter(action='ignore', category=FutureWarning) | |
from src.application.text.preprocessing import split_into_sentences | |
from src.application.text.search import generate_search_phrases, search_by_google | |
from src.application.url_reader import URLReader | |
import numpy as np | |
import nltk | |
import torch | |
from nltk.corpus import stopwords | |
from sentence_transformers import SentenceTransformer, util | |
import math | |
from difflib import SequenceMatcher | |
# Download necessary NLTK data files | |
nltk.download('punkt', quiet=True) | |
nltk.download('punkt_tab', quiet=True) | |
nltk.download('stopwords', quiet=True) | |
# load the model | |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
PARAPHASE_MODEL = SentenceTransformer('paraphrase-MiniLM-L6-v2') | |
PARAPHASE_MODEL.to(DEVICE) | |
BATCH_SIZE = 8 | |
PARAPHRASE_THRESHOLD = 0.8 | |
PARAPHRASE_THRESHOLD_FOR_OPPOSITE = 0.7 | |
MIN_SAME_SENTENCE_LEN = 6 | |
MIN_PHRASE_SENTENCE_LEN = 10 | |
MIN_RATIO_PARAPHRASE_NUM = 0.7 | |
MAX_CHAR_SIZE = 30000 | |
def detect_text_by_relative_search(input_text, is_support_opposite = False): | |
checked_urls = set() | |
searched_phrases = generate_search_phrases(input_text) | |
for candidate in searched_phrases: | |
search_results = search_by_google(candidate) | |
urls = [item['link'] for item in search_results.get("items", [])] | |
for url in urls[:3]: | |
if url in checked_urls: # visited url | |
continue | |
checked_urls.add(url) | |
print(f"\t\tChecking URL: {url}") | |
content = URLReader(url) | |
if content.is_extracted is True: | |
if content.title is None or content.text is None: | |
print(f"\t\t\tβββ Title or text not found") | |
continue | |
page_text = content.title + "\n" + content.text | |
if len(page_text) > MAX_CHAR_SIZE: | |
print(f"\t\t\tβββ More than {MAX_CHAR_SIZE} characters") | |
continue | |
is_paraphrase, aligned_sentences = check_paraphrase(input_text, page_text, url) | |
#if is_paraphrase: | |
return is_paraphrase, url, aligned_sentences, content.images | |
return False, None, [], [] | |
def longest_common_subsequence(arr1, arr2): | |
""" | |
Finds the length of the longest common subsequence (contiguous) between | |
two arrays. | |
Args: | |
arr1: The first array. | |
arr2: The second array. | |
Returns: | |
The length of the longest common subsequence. | |
Returns 0 if either input is invalid. | |
""" | |
if not isinstance(arr1, list) or not isinstance(arr2, list): | |
return 0 | |
n = len(arr1) | |
m = len(arr2) | |
if n == 0 or m == 0: #handle empty list | |
return 0 | |
# Create table dp with size (n+1) x (m+1) | |
dp = [[0] * (m + 1) for _ in range(n + 1)] | |
max_length = 0 | |
for i in range(1, n + 1): | |
for j in range(1, m + 1): | |
if arr1[i - 1] == arr2[j - 1]: | |
dp[i][j] = dp[i - 1][j - 1] + 1 | |
max_length = max(max_length, dp[i][j]) | |
else: | |
dp[i][j] = 0 # set 0 since the array must be consecutive | |
return max_length | |
def check_sentence(input_sentence, source_sentence, min_same_sentence_len, | |
min_phrase_sentence_len, verbose=False): | |
""" | |
Checks if two sentences are similar based on exact match or | |
longest common subsequence. | |
Args: | |
input_sentence: The input sentence. | |
source_sentence: The source sentence. | |
min_same_sentence_len: Minimum length for exact sentence match. | |
min_phrase_sentence_len: Minimum length for common subsequence match. | |
verbose: If True, print debug information. | |
Returns: | |
True if the sentences are considered similar, False otherwise. | |
Returns False if input is not valid. | |
""" | |
if not isinstance(input_sentence, str) or not isinstance(source_sentence, str): | |
return False | |
input_sentence = input_sentence.strip() | |
source_sentence = source_sentence.strip() | |
if not input_sentence or not source_sentence: # handle empty string | |
return False | |
input_words = input_sentence.split() # split without arguments | |
source_words = source_sentence.split() # split without arguments | |
if input_sentence == source_sentence and len(input_words) >= min_same_sentence_len: | |
if verbose: | |
print("Exact match found.") | |
return True | |
max_overlap_len = longest_common_subsequence(input_words, source_words) | |
if verbose: | |
print(f"Max overlap length: {max_overlap_len}") # print overlap length | |
if max_overlap_len >= min_phrase_sentence_len: | |
return True | |
return False | |
def check_paraphrase(input_text, page_text, url, verbose=False): | |
""" | |
Checks if the input text is paraphrased in the content at the given URL. | |
Args: | |
input_text: The text to check for paraphrase. | |
page_text: The text of the web page to compare with. | |
verbose: If True, print debug information. | |
Returns: | |
A tuple containing: | |
- is_paraphrase: True if the input text is considered a paraphrase, False otherwise. | |
- paraphrase_results: A list of dictionaries, each containing: | |
- input_sentence: The sentence from the input text. | |
- matched_sentence: The corresponding sentence from the web page (if found). | |
- similarity: The cosine similarity score between the sentences. | |
- is_paraphrase_sentence: True if the individual sentence pair meets the paraphrase criteria, False otherwise. | |
""" | |
is_paraphrase_text = False | |
if not isinstance(input_text, str) or not isinstance(page_text, str): | |
return False, [] | |
# Extract sentences from input text and web page | |
#input_text = remove_punctuation(input_text) | |
input_sentences = split_into_sentences(input_text) | |
if not page_text: | |
return is_paraphrase_text, [] | |
#page_text = remove_punctuation(page_text) | |
page_sentences = split_into_sentences(page_text) | |
if not input_sentences or not page_sentences: | |
return is_paraphrase_text, [] | |
additional_sentences = [] | |
for sentence in page_sentences: | |
if ", external" in sentence: | |
additional_sentences.append(sentence.replace(", external", "")) | |
page_sentences.extend(additional_sentences) | |
min_matching_sentences = math.ceil(len(input_sentences) * MIN_RATIO_PARAPHRASE_NUM) | |
# Encode sentences into embeddings | |
embeddings1 = PARAPHASE_MODEL.encode(input_sentences, convert_to_tensor=True, device=DEVICE) | |
embeddings2 = PARAPHASE_MODEL.encode(page_sentences, convert_to_tensor=True, device=DEVICE) | |
# Compute cosine similarity matrix | |
similarity_matrix = util.cos_sim(embeddings1, embeddings2).cpu().numpy() | |
# Find sentence alignments | |
alignment = {} | |
paraphrased_sentence_count = 0 | |
for i, sentence1 in enumerate(input_sentences): | |
print(f"allign: {i}") | |
max_sim_index = np.argmax(similarity_matrix[i]) | |
max_similarity = similarity_matrix[i][max_sim_index] | |
is_paraphrase_sentence = max_similarity > PARAPHRASE_THRESHOLD | |
if 0.80 > max_similarity: | |
alignment = { | |
"input_sentence": sentence1, | |
"matched_sentence": "", | |
"similarity": max_similarity, | |
"is_paraphrase_sentence": is_paraphrase_sentence, | |
"url": "", | |
} | |
else: | |
alignment = { | |
"input_sentence": sentence1, | |
"matched_sentence": page_sentences[max_sim_index], | |
"similarity": max_similarity, | |
"is_paraphrase_sentence": is_paraphrase_sentence, | |
"url": url, | |
} | |
# Check for individual sentence paraphrase if overall paraphrase not yet found | |
if not is_paraphrase_text and check_sentence( | |
sentence1, page_sentences[max_sim_index], MIN_SAME_SENTENCE_LEN, MIN_PHRASE_SENTENCE_LEN | |
): | |
is_paraphrase_text = True | |
if verbose: | |
print(f"Paraphrase found for individual sentence: {sentence1}") | |
print(f"Matched sentence: {page_sentences[max_sim_index]}") | |
#alignment.append(item) | |
paraphrased_sentence_count += 1 if is_paraphrase_sentence else 0 | |
# Check if enough sentences are paraphrases | |
is_paraphrase_text = paraphrased_sentence_count > 0 #min_matching_sentences | |
if verbose: | |
print (f"\t\tparaphrased_sentence_count: {paraphrased_sentence_count}, min_matching_sentences: {min_matching_sentences}, total_sentence_count: {len(input_sentences)}") | |
print(f"Minimum matching sentences required: {min_matching_sentences}") | |
print(f"Total input sentences: {len(input_sentences)}") | |
print(f"Number of matching sentences: {paraphrased_sentence_count}") | |
print(f"Is paraphrase: {is_paraphrase_text}") | |
for item in alignment: | |
print(item) | |
return is_paraphrase_text, alignment | |
def similarity_ratio(a, b): | |
""" | |
Calculates the similarity ratio between two strings using SequenceMatcher. | |
Args: | |
a: The first string. | |
b: The second string. | |
Returns: | |
A float representing the similarity ratio between 0.0 and 1.0. | |
Returns 0.0 if either input is None or not a string. | |
""" | |
if not isinstance(a, str) or not isinstance(b, str) or a is None or b is None: | |
return 0.0 # Handle cases where inputs are not strings or None | |
return SequenceMatcher(None, a, b).ratio() | |
def check_human(alligned_sentences): | |
""" | |
Checks if a sufficient number of input sentences are found within | |
source sentences. | |
Returns: | |
bool: True if the condition is met, False otherwise. | |
""" | |
if not alligned_sentences: # Handle empty data case | |
return False | |
if alligned_sentences["similarity"] >= 0.99: | |
return True | |
return False | |
if __name__ == '__main__': | |
pass |