File size: 10,161 Bytes
1ce1659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
1ce1659
 
 
 
 
 
 
 
 
 
 
 
da7dbd0
1ce1659
 
 
 
da7dbd0
 
 
 
1ce1659
da7dbd0
 
1ce1659
da7dbd0
d952fbe
 
 
 
da7dbd0
1ce1659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
1ce1659
 
 
 
 
d952fbe
1ce1659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
1ce1659
 
d952fbe
1ce1659
 
 
 
 
d952fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce1659
 
 
 
 
 
 
 
 
 
d952fbe
1ce1659
 
 
 
d952fbe
1ce1659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d952fbe
1ce1659
 
 
 
 
 
 
da7dbd0
1ce1659
 
d952fbe
1ce1659
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

from src.application.text.preprocessing import split_into_sentences
from src.application.text.search import generate_search_phrases, search_by_google
from src.application.url_reader import URLReader
import numpy as np
import nltk
import torch
from nltk.corpus import stopwords
from sentence_transformers import SentenceTransformer, util
import math

from difflib import SequenceMatcher

# Download necessary NLTK data files
nltk.download('punkt', quiet=True)
nltk.download('punkt_tab', quiet=True)
nltk.download('stopwords', quiet=True)

# load the model
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
PARAPHASE_MODEL = SentenceTransformer('paraphrase-MiniLM-L6-v2')
PARAPHASE_MODEL.to(DEVICE)

BATCH_SIZE = 8

PARAPHRASE_THRESHOLD = 0.8
PARAPHRASE_THRESHOLD_FOR_OPPOSITE = 0.7
MIN_SAME_SENTENCE_LEN = 6
MIN_PHRASE_SENTENCE_LEN = 10
MIN_RATIO_PARAPHRASE_NUM = 0.7
MAX_CHAR_SIZE = 30000


def detect_text_by_relative_search(input_text, is_support_opposite = False):

    checked_urls = set()
    searched_phrases = generate_search_phrases(input_text)

    for candidate in searched_phrases:
        search_results = search_by_google(candidate)
        urls = [item['link'] for item in search_results.get("items", [])]

        for url in urls[:3]:
            if url in checked_urls: # visited url
                continue
            checked_urls.add(url)
            print(f"\t\tChecking URL: {url}")
            
            content = URLReader(url)
            
            if content.is_extracted is True:
                if content.title is None or content.text is None:
                    print(f"\t\t\t↑↑↑ Title or text not found")
                    continue
                
                page_text = content.title + "\n" + content.text
                if len(page_text) > MAX_CHAR_SIZE:
                    print(f"\t\t\t↑↑↑ More than {MAX_CHAR_SIZE} characters")
                    continue
                
                is_paraphrase, aligned_sentences = check_paraphrase(input_text, page_text, url)
                #if is_paraphrase:
                return is_paraphrase, url, aligned_sentences, content.images
                
    return False, None, [], []

def longest_common_subsequence(arr1, arr2):
    """
    Finds the length of the longest common subsequence (contiguous) between
        two arrays.

    Args:
        arr1: The first array.
        arr2: The second array.

    Returns:
        The length of the longest common subsequence. 
        Returns 0 if either input is invalid.
    """

    if not isinstance(arr1, list) or not isinstance(arr2, list):
        return 0

    n = len(arr1)
    m = len(arr2)

    if n == 0 or m == 0: #handle empty list
        return 0

    # Create table dp with size (n+1) x (m+1)
    dp = [[0] * (m + 1) for _ in range(n + 1)]
    max_length = 0

    for i in range(1, n + 1):
        for j in range(1, m + 1):
            if arr1[i - 1] == arr2[j - 1]:
                dp[i][j] = dp[i - 1][j - 1] + 1
                max_length = max(max_length, dp[i][j])
            else:
                dp[i][j] = 0  # set 0 since the array must be consecutive

    return max_length


def check_sentence(input_sentence, source_sentence, min_same_sentence_len,
                   min_phrase_sentence_len, verbose=False):
    """
    Checks if two sentences are similar based on exact match or 
        longest common subsequence.

    Args:
        input_sentence: The input sentence.
        source_sentence: The source sentence.
        min_same_sentence_len: Minimum length for exact sentence match.
        min_phrase_sentence_len: Minimum length for common subsequence match.
        verbose: If True, print debug information.

    Returns:
        True if the sentences are considered similar, False otherwise.
        Returns False if input is not valid.
    """

    if not isinstance(input_sentence, str) or not isinstance(source_sentence, str):
        return False

    input_sentence = input_sentence.strip()
    source_sentence = source_sentence.strip()

    if not input_sentence or not source_sentence:  # handle empty string
        return False

    input_words = input_sentence.split()  # split without arguments
    source_words = source_sentence.split()  # split without arguments

    if input_sentence == source_sentence and len(input_words) >= min_same_sentence_len:
        if verbose:
            print("Exact match found.")
        return True

    max_overlap_len = longest_common_subsequence(input_words, source_words)
    if verbose:
        print(f"Max overlap length: {max_overlap_len}")  # print overlap length
    if max_overlap_len >= min_phrase_sentence_len:
        return True

    return False


def check_paraphrase(input_text, page_text, url, verbose=False):
    """
    Checks if the input text is paraphrased in the content at the given URL.

    Args:
        input_text: The text to check for paraphrase.
        page_text: The text of the web page to compare with.
        verbose: If True, print debug information.

    Returns:
        A tuple containing:
            - is_paraphrase: True if the input text is considered a paraphrase, False otherwise.
            - paraphrase_results: A list of dictionaries, each containing:
                - input_sentence: The sentence from the input text.
                - matched_sentence: The corresponding sentence from the web page (if found).
                - similarity: The cosine similarity score between the sentences.
                - is_paraphrase_sentence: True if the individual sentence pair meets the paraphrase criteria, False otherwise.
    """
    is_paraphrase_text = False
    
    if not isinstance(input_text, str) or not isinstance(page_text, str):
        return False, []

    # Extract sentences from input text and web page
    #input_text = remove_punctuation(input_text)
    input_sentences = split_into_sentences(input_text)
    

    if not page_text:
        return is_paraphrase_text, []
    #page_text = remove_punctuation(page_text)
    page_sentences = split_into_sentences(page_text)

    if not input_sentences or not page_sentences:
        return is_paraphrase_text, []

    additional_sentences = []
    for sentence in page_sentences:
        if ", external" in sentence:
            additional_sentences.append(sentence.replace(", external", ""))
    page_sentences.extend(additional_sentences)
    
    min_matching_sentences = math.ceil(len(input_sentences) * MIN_RATIO_PARAPHRASE_NUM)

    # Encode sentences into embeddings
    embeddings1 = PARAPHASE_MODEL.encode(input_sentences, convert_to_tensor=True, device=DEVICE)
    embeddings2 = PARAPHASE_MODEL.encode(page_sentences, convert_to_tensor=True, device=DEVICE)

    # Compute cosine similarity matrix
    similarity_matrix = util.cos_sim(embeddings1, embeddings2).cpu().numpy()

    # Find sentence alignments
    alignment = {}
    paraphrased_sentence_count = 0
    for i, sentence1 in enumerate(input_sentences):
        print(f"allign: {i}")
        max_sim_index = np.argmax(similarity_matrix[i])
        max_similarity = similarity_matrix[i][max_sim_index]

        is_paraphrase_sentence = max_similarity > PARAPHRASE_THRESHOLD

        if 0.80 > max_similarity:
            alignment = {
                "input_sentence": sentence1,
                "matched_sentence": "",
                "similarity": max_similarity,
                "is_paraphrase_sentence": is_paraphrase_sentence,
                "url": "",
            }
        else:
            alignment = {
                "input_sentence": sentence1,
                "matched_sentence": page_sentences[max_sim_index],
                "similarity": max_similarity,
                "is_paraphrase_sentence": is_paraphrase_sentence,
                "url": url,
            }

        # Check for individual sentence paraphrase if overall paraphrase not yet found
        if not is_paraphrase_text and check_sentence(
            sentence1, page_sentences[max_sim_index], MIN_SAME_SENTENCE_LEN, MIN_PHRASE_SENTENCE_LEN
        ):
            is_paraphrase_text = True
            if verbose:
                print(f"Paraphrase found for individual sentence: {sentence1}")
                print(f"Matched sentence: {page_sentences[max_sim_index]}")

        #alignment.append(item)
        paraphrased_sentence_count += 1 if is_paraphrase_sentence else 0

    # Check if enough sentences are paraphrases
    
    is_paraphrase_text = paraphrased_sentence_count > 0 #min_matching_sentences

    if verbose:
        print (f"\t\tparaphrased_sentence_count: {paraphrased_sentence_count}, min_matching_sentences: {min_matching_sentences}, total_sentence_count: {len(input_sentences)}")
        print(f"Minimum matching sentences required: {min_matching_sentences}")
        print(f"Total input sentences: {len(input_sentences)}")
        print(f"Number of matching sentences: {paraphrased_sentence_count}")
        print(f"Is paraphrase: {is_paraphrase_text}")
        for item in alignment:
            print(item)

    return is_paraphrase_text, alignment

def similarity_ratio(a, b):
    """
    Calculates the similarity ratio between two strings using SequenceMatcher.

    Args:
        a: The first string.
        b: The second string.

    Returns:
        A float representing the similarity ratio between 0.0 and 1.0.
        Returns 0.0 if either input is None or not a string.
    """
    if not isinstance(a, str) or not isinstance(b, str) or a is None or b is None:
        return 0.0  # Handle cases where inputs are not strings or None
    return SequenceMatcher(None, a, b).ratio()

def check_human(alligned_sentences):
    """
    Checks if a sufficient number of input sentences are found within
        source sentences.

    Returns:
        bool: True if the condition is met, False otherwise.
    """
    if not alligned_sentences:  # Handle empty data case
        return False

    if alligned_sentences["similarity"] >= 0.99:
        return True
    return False


if __name__ == '__main__':    
    pass