Spaces:
Sleeping
Sleeping
File size: 31,394 Bytes
da7dbd0 504f37b 38fd181 26e3944 bfe6692 26e3944 38fd181 62dc9d8 7e6ffb4 38fd181 1ce1659 38fd181 da7dbd0 38fd181 62dc9d8 bfe6692 62dc9d8 38fd181 bfe6692 da7dbd0 38fd181 62dc9d8 38fd181 bfe6692 62dc9d8 38fd181 7e6ffb4 38fd181 62dc9d8 38fd181 62dc9d8 38fd181 da7dbd0 62dc9d8 da7dbd0 1ce1659 da7dbd0 7e6ffb4 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 7e6ffb4 bfe6692 62dc9d8 bfe6692 7e6ffb4 504f37b 38fd181 504f37b 38fd181 504f37b 7e6ffb4 62dc9d8 bfe6692 7e6ffb4 38fd181 504f37b 7e6ffb4 62dc9d8 7e6ffb4 62dc9d8 38fd181 62dc9d8 7e6ffb4 62dc9d8 504f37b 7e6ffb4 62dc9d8 bfe6692 62dc9d8 7e6ffb4 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 7e6ffb4 da7dbd0 38fd181 da7dbd0 62dc9d8 da7dbd0 38fd181 da7dbd0 62dc9d8 da7dbd0 38fd181 da7dbd0 a6b0abd da7dbd0 38fd181 da7dbd0 1ce1659 da7dbd0 62dc9d8 da7dbd0 d952fbe bfe6692 62dc9d8 bfe6692 504f37b 62dc9d8 504f37b 62dc9d8 38fd181 62dc9d8 bfe6692 38fd181 d952fbe 38fd181 d952fbe 26e3944 d952fbe 38fd181 d952fbe 26e3944 d952fbe 26e3944 38fd181 62dc9d8 bfe6692 26e3944 bfe6692 62dc9d8 bfe6692 62dc9d8 504f37b 26e3944 62dc9d8 26e3944 62dc9d8 bfe6692 38fd181 26e3944 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 d952fbe 38fd181 d952fbe da7dbd0 38fd181 62dc9d8 38fd181 1ce1659 26e3944 62dc9d8 504f37b 62dc9d8 26e3944 62dc9d8 bfe6692 62dc9d8 38fd181 56cf7e3 38fd181 62dc9d8 bfe6692 38fd181 56cf7e3 7e6ffb4 56cf7e3 62dc9d8 bfe6692 62dc9d8 bfe6692 62dc9d8 bfe6692 d952fbe 38fd181 62dc9d8 504f37b bfe6692 62dc9d8 56cf7e3 38fd181 62dc9d8 b489aea 38fd181 b489aea a6b0abd 38fd181 26e3944 38fd181 26e3944 38fd181 5d842c6 38fd181 26e3944 62dc9d8 bfe6692 26e3944 7e6ffb4 62dc9d8 38fd181 26e3944 62dc9d8 26e3944 38fd181 26e3944 38fd181 26e3944 504f37b 26e3944 38fd181 26e3944 38fd181 62dc9d8 bfe6692 26e3944 bfe6692 62dc9d8 bfe6692 62dc9d8 38fd181 26e3944 62dc9d8 26e3944 62dc9d8 38fd181 26e3944 38fd181 26e3944 38fd181 62dc9d8 38fd181 26e3944 38fd181 26e3944 62dc9d8 26e3944 62dc9d8 26e3944 62dc9d8 26e3944 38fd181 bfe6692 26e3944 38fd181 7e6ffb4 62dc9d8 bfe6692 38fd181 7e6ffb4 62dc9d8 bfe6692 38fd181 26e3944 38fd181 26e3944 62dc9d8 7e6ffb4 38fd181 504f37b bfe6692 26e3944 62dc9d8 bfe6692 62dc9d8 504f37b 26e3944 38fd181 62dc9d8 38fd181 26e3944 38fd181 62dc9d8 26e3944 38fd181 26e3944 38fd181 26e3944 504f37b 62dc9d8 504f37b d952fbe 38fd181 d952fbe 1ce1659 56cf7e3 38fd181 56cf7e3 bfe6692 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 62dc9d8 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 38fd181 56cf7e3 62dc9d8 56cf7e3 38fd181 56cf7e3 62dc9d8 38fd181 bfe6692 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
from difflib import SequenceMatcher
import pandas as pd
from src.application.image.image_detection import (
detect_image_by_ai_model,
detect_image_by_reverse_search,
detect_image_from_news_image,
)
from src.application.text.entity import (
apply_highlight,
highlight_entities,
)
from src.application.text.helper import extract_equal_text
from src.application.text.model_detection import (
detect_text_by_ai_model,
predict_generation_model,
)
from src.application.text.preprocessing import split_into_paragraphs
from src.application.text.search_detection import (
PARAPHRASE_THRESHOLD_MACHINE,
find_paragraph_source,
)
class NewsVerification:
def __init__(self):
self.news_text = ""
self.news_title = ""
self.news_content = ""
self.news_image = ""
self.text_prediction_label: list[str] = ["UNKNOWN"]
self.text_prediction_score: list[float] = [0.0]
self.image_prediction_label: list[str] = ["UNKNOWN"]
self.image_prediction_score: list[str] = [0.0]
self.image_referent_url: list[str] = []
self.news_prediction_label = ""
self.news_prediction_score = -1
# news' urls to find img
self.found_img_url: list[str] = []
# Analyzed results
self.aligned_paragraphs_df: pd.DataFrame = pd.DataFrame(
columns=[
"input",
"source",
"label",
"similarity",
"paraphrase",
"url",
"group",
"entities",
],
)
self.grouped_url_df: pd.DataFrame = pd.DataFrame()
# For formatting ouput tables
self.ordinary_user_table: list = []
self.fact_checker_table: list = []
self.governor_table: list = []
def load_news(self, news_title, news_content, news_image):
self.news_text = (news_title + "\n\n" + news_content).strip()
self.news_title = news_title
self.news_content = news_content
self.news_image = news_image
def determine_text_origin(self):
self.find_text_source()
# Group inout and source by url
def concat_text(series):
return " ".join(
series.astype(str).tolist(),
) # Handle mixed data types and NaNs
self.grouped_url_df = self.aligned_paragraphs_df.groupby("url").agg(
{
"input": concat_text,
"source": concat_text,
},
)
self.grouped_url_df = self.grouped_url_df.reset_index()
# Add new columns for label and score
self.grouped_url_df["label"] = None
self.grouped_url_df["score"] = None
print(f"aligned_paragraphs_df:\n {self.aligned_paragraphs_df}")
for index, row in self.grouped_url_df.iterrows():
label, score = self.verify_text(row["url"])
if label == "UNKNOWN":
# Concatenate text from "input" in sentence_df
text = " ".join(row["input"])
# detect by baseline model
label, score = detect_text_by_ai_model(text)
self.grouped_url_df.at[index, "label"] = label
self.grouped_url_df.at[index, "score"] = score
# Overall label or score for the whole input text
if len(self.grouped_url_df) > 0:
machine_label = self.grouped_url_df[
self.grouped_url_df["label"].str.contains(
"MACHINE",
case=False,
na=False,
)
]
# machine_label = self.aligned_paragraphs_df[
# self.aligned_paragraphs_df["label"] == "MACHINE"
# ]
if len(machine_label) > 0:
label = " ".join(machine_label["label"].tolist())
self.text_prediction_label[0] = label
self.text_prediction_score[0] = machine_label["score"].mean()
else:
machine_label = self.aligned_paragraphs_df[
self.aligned_paragraphs_df["label"] == "HUMAN"
]
self.text_prediction_label[0] = "HUMAN"
self.text_prediction_score[0] = machine_label["score"].mean()
else: # no source found in the input text
print("No source found in the input text")
text = " ".join(self.aligned_paragraphs_df["input"].tolist())
# detect by baseline model
label, score = detect_text_by_ai_model(text)
self.text_prediction_label[0] = label
self.text_prediction_score[0] = score
def find_text_source(self):
"""
Determines the origin of the given text based on paraphrasing detection
and human authorship analysis.
Args:
text: The input text to be analyzed.
Returns:
str: The predicted origin of the text:
- "HUMAN": If the text is likely written by a human.
- "MACHINE": If the text is likely generated by a machine.
"""
print("CHECK TEXT:")
print("\tFrom search engine:")
# Classify by search engine
input_sentences = split_into_paragraphs(self.news_text)
# Setup df for input_sentences
for _ in range(len(input_sentences)):
self.aligned_paragraphs_df = pd.concat(
[
self.aligned_paragraphs_df,
pd.DataFrame(
[
{
"input": None,
"source": None,
"label": None,
"similarity": None,
"paraphrase": None,
"url": None,
"entities": None,
},
],
),
],
ignore_index=True,
)
# find a source for each paragraph
for index, _ in enumerate(input_sentences):
similarity = self.aligned_paragraphs_df.loc[index, "similarity"]
if similarity is not None:
if similarity > PARAPHRASE_THRESHOLD_MACHINE:
continue
print(f"\n-------index = {index}-------")
print(f"current_text = {input_sentences[index]}\n")
self.aligned_paragraphs_df, img_urls = find_paragraph_source(
input_sentences,
index,
self.aligned_paragraphs_df,
)
self.found_img_url.extend(img_urls)
# determine if the whole source is from a news or not
def verify_text(self, url):
label = "UNKNOWN"
score = 0
# calculate the average similarity when the similary score
# in each row of sentences_df is higher than 0.8
filtered_by_url = self.aligned_paragraphs_df[
self.aligned_paragraphs_df["url"] == url
]
filtered_by_similarity = filtered_by_url[
filtered_by_url["similarity"] > 0.8
]
if len(filtered_by_similarity) / len(self.aligned_paragraphs_df) > 0.5:
# check if "MACHINE" is in self.aligned_sentences_df["label"]:
contains_machine = (
filtered_by_similarity["label"]
.str.contains(
"MACHINE",
case=False,
na=False,
)
.any()
)
if contains_machine:
label = "MACHINE"
machine_rows = filtered_by_similarity[
filtered_by_similarity["label"].str.contains(
"MACHINE",
case=False,
na=False,
)
]
generated_model, _ = predict_generation_model(self.news_text)
label += f"<br>({generated_model})"
score = machine_rows["similarity"].mean()
else:
label = "HUMAN"
human_rows = filtered_by_similarity[
filtered_by_similarity["label"].str.contains(
"HUMAN",
case=False,
na=False,
)
]
score = human_rows["similarity"].mean()
return label, score
def determine_image_origin(self):
print("CHECK IMAGE:")
if self.news_image is None:
self.image_prediction_label = "UNKNOWN"
self.image_prediction_score = 0.0
self.image_referent_url = None
return
matched_url, similarity = detect_image_from_news_image(
self.news_image,
self.found_img_url,
)
if matched_url is not None:
print(f"matched image: {matched_url}\nsimilarity: {similarity}\n")
self.image_prediction_label = "HUMAN"
self.image_prediction_score = similarity
self.image_referent_url = matched_url
return
matched_url, similarity = detect_image_by_reverse_search(
self.news_image,
)
if matched_url is not None:
print(f"matched image: {matched_url}\tScore: {similarity}%\n")
self.image_prediction_label = "HUMAN"
self.image_prediction_score = similarity
self.image_referent_url = matched_url
return
detected_label, score = detect_image_by_ai_model(self.news_image)
if detected_label:
print(f"detected_label: {detected_label} ({score})")
self.image_prediction_label = detected_label
self.image_prediction_score = score
self.image_referent_url = None
return
self.image_prediction_label = "UNKNOWN"
self.image_prediction_score = 50
self.image_referent_url = None
def generate_analysis_report(self):
if self.news_text != "":
self.determine_text_origin()
if self.news_image != "":
self.determine_image_origin()
def analyze_details(self):
self.handle_entities()
ordinary_user_table = self.create_ordinary_user_table()
fact_checker_table = self.create_fact_checker_table()
governor_table = self.create_governor_table()
return ordinary_user_table, fact_checker_table, governor_table
def handle_entities(self):
entities_with_colors = []
for index, row in self.grouped_url_df.iterrows():
# Get entity-words (in pair) with colors
entities_with_colors = highlight_entities(
row["input"],
row["source"],
)
for index, paragraph in self.aligned_paragraphs_df.iterrows():
if paragraph["url"] == row["url"]:
self.aligned_paragraphs_df.at[index, "entities"] = (
entities_with_colors # must use at
)
def get_text_urls(self):
return set(self.text_referent_url)
def compare_sentences(self, sentence_1, sentence_2, position, color):
"""
Compares two sentences and identifies common phrases,
outputting their start and end positions.
"""
if not sentence_1 or not sentence_2: # Handle empty strings
return []
s = SequenceMatcher(None, sentence_1, sentence_2)
common_phrases = []
for block in s.get_matching_blocks():
if block.size > 0: # Ignore zero-length matches
start_1 = block.a
end_1 = block.a + block.size
start_2 = block.b
end_2 = block.b + block.size
phrase = sentence_1[
start_1:end_1
] # Or sentence_2[start_2:end_2], they are the same
common_phrases.append(
{
"phrase": phrase,
"start_1": start_1 + position,
"end_1": end_1 + position,
"start_2": start_2,
"end_2": end_2,
"color": color,
},
)
position += len(sentence_1)
return common_phrases, position
def create_fact_checker_table(self):
rows = []
max_length = 30 # TODO: put this in configuration
rows.append(self.format_image_fact_checker_row(max_length))
for _, row in self.aligned_paragraphs_df.iterrows():
if row["input"] is None:
continue
if row["source"] is None:
equal_idx_1 = equal_idx_2 = []
else: # Get index of equal phrases in input and source sentences
equal_idx_1, equal_idx_2 = extract_equal_text(
row["input"],
row["source"],
)
self.fact_checker_table.append(
[
row,
equal_idx_1,
equal_idx_2,
row["entities"],
row["url"],
],
)
previous_url = None
span_row = 1
for index, row in enumerate(self.fact_checker_table):
current_url = row[4]
last_url_row = False
# First row or URL change
if index == 0 or current_url != previous_url:
first_url_row = True
previous_url = current_url
# Increase counter "span_row" when the next url is the same
while (
index + span_row < len(self.fact_checker_table)
and self.fact_checker_table[index + span_row][4]
== current_url
):
span_row += 1
else:
first_url_row = False
span_row -= 1
if span_row == 1:
last_url_row = True
formatted_row = self.format_text_fact_checker_row(
row,
first_url_row,
last_url_row,
span_row,
max_length,
)
rows.append(formatted_row)
table = "\n".join(rows)
return f"""
<h5>Comparison between input news and source news:</h5>
<table border="1" style="width:100%; text-align:left;">
<col style="width: 170px;">
<col style="width: 170px;">
<col style="width: 30px;">
<col style="width: 75px;">
<thead>
<tr>
<th>Input news</th>
<th>Source (URL in Originality)</th>
<th>Forensic</th>
<th>Originality</th>
</tr>
</thead>
<tbody>
{table}
</tbody>
</table>
<style>
"""
def format_text_fact_checker_row(
self,
row,
first_url_row=True,
last_url_row=True,
span_row=1,
max_length=30,
):
entity_count = 0
if row[0]["input"] is None:
return ""
if row[0]["source"] is not None: # source is not empty
if row[3] is not None:
# highlight entities
input_sentence, highlight_idx_input = apply_highlight(
row[0]["input"],
row[3],
"input",
)
source_sentence, highlight_idx_source = apply_highlight(
row[0]["source"],
row[3],
"source",
)
else:
input_sentence = row[0]["input"]
source_sentence = row[0]["source"]
highlight_idx_input = []
highlight_idx_source = []
if row[3] is not None:
entity_count = len(row[3])
# Color overlapping words
input_sentence = self.color_text(
input_sentence,
row[1],
highlight_idx_input,
) # text, index of highlight words
source_sentence = self.color_text(
source_sentence,
row[2],
highlight_idx_source,
) # text, index of highlight words
# Replace _ to get correct formatting
# Original one having _ for correct word counting
input_sentence = input_sentence.replace(
"span_style",
"span style",
).replace("1px_4px", "1px 4px")
source_sentence = source_sentence.replace(
"span_style",
"span style",
).replace("1px_4px", "1px 4px")
else:
input_sentence = row[0]["input"]
source_sentence = row[0]["source"]
url = row[0]["url"]
# Displayed label and score by url
filterby_url = self.grouped_url_df[self.grouped_url_df["url"] == url]
if len(filterby_url) > 0:
label = filterby_url["label"].values[0]
score = filterby_url["score"].values[0]
else:
label = self.text_prediction_label[0]
score = self.text_prediction_score[0]
# Format displayed url
short_url = self.shorten_url(url, max_length)
source_text_url = f"""<a href="{url}">{short_url}</a>"""
# Format displayed entity count
entity_count_text = self.get_entity_count_text(entity_count)
border_top = "border-top: 1px solid transparent;"
border_bottom = "border-bottom: 1px solid transparent;"
if first_url_row is True:
# First & Last the group: no transparent
if last_url_row is True:
return f"""
<tr>
<td>{input_sentence}</td>
<td>{source_sentence}</td>
<td rowspan="{span_row}">{label}<br>
({score * 100:.2f}%)<br><br>
{entity_count_text}</td>
<td rowspan="{span_row}">{source_text_url}</td>
</tr>
"""
# First row of the group: transparent bottom border
return f"""
<tr>
<td style="{border_bottom}";>{input_sentence}</td>
<td style="{border_bottom}";>{source_sentence}</td>
<td rowspan="{span_row}">{label}<br>
({score * 100:.2f}%)<br><br>
{entity_count_text}</td>
<td rowspan="{span_row}">{source_text_url}</td>
</tr>
"""
else:
if last_url_row is True:
# NOT First row, Last row: transparent top border
return f"""
<tr>
<td style="{border_top}";>{input_sentence}</td>
<td style="{border_top}";>{source_sentence}</td>
</tr>
"""
else:
# NOT First & NOT Last row: transparent top & bottom borders
return f"""
<tr>
<td style="{border_top} {border_bottom}";>{input_sentence}</td>
<td style="{border_top} {border_bottom}";>{source_sentence}</td>
</tr>
"""
def format_image_fact_checker_row(self, max_length=30):
if (
self.image_referent_url is not None
or self.image_referent_url != ""
):
source_image = f"""<img src="{self.image_referent_url}" width="100" height="150">""" # noqa: E501
short_url = self.shorten_url(self.image_referent_url, max_length)
source_image_url = (
f"""<a href="{self.image_referent_url}">{short_url}</a>"""
)
else:
source_image = "Image not found"
source_image_url = ""
return f"""<tr><td>input image</td><td>{source_image}</td><td>{self.image_prediction_label}<br>({self.image_prediction_score:.2f}%)</td><td>{source_image_url}</td></tr>""" # noqa: E501
def create_ordinary_user_table(self):
rows = []
max_length = 30 # TODO: put this in configuration
rows.append(self.format_image_ordinary_user_row(max_length))
rows.append(self.format_text_ordinary_user_row(max_length))
table = "\n".join(rows)
return f"""
<h5>Comparison between input news and source news:</h5>
<table border="1" style="width:100%; text-align:left;">
<col style="width: 170px;">
<col style="width: 30px;">
<col style="width: 75px;">
<thead>
<tr>
<th>Input news</th>
<th>Forensic</th>
<th>Originality</th>
</tr>
</thead>
<tbody>
{table}
</tbody>
</table>
<style>
"""
def format_text_ordinary_user_row(self, max_length=30):
input_sentences = ""
source_text_urls = ""
urls = []
for _, row in self.aligned_paragraphs_df.iterrows():
if row["input"] is None:
continue
input_sentences += row["input"] + "<br><br>"
url = row["url"]
if url not in urls:
urls.append(url)
short_url = self.shorten_url(url, max_length)
source_text_urls += f"""<a href="{url}">{short_url}</a><br>"""
return f"""
<tr>
<td>{input_sentences}</td>
<td>{self.text_prediction_label[0]}<br>
({self.text_prediction_score[0] * 100:.2f}%)</td>
<td>{source_text_urls}</td>
</tr>
"""
def format_image_ordinary_user_row(self, max_length=30):
if (
self.image_referent_url is not None
or self.image_referent_url != ""
):
short_url = self.shorten_url(self.image_referent_url, max_length)
source_image_url = (
f"""<a href="{self.image_referent_url}">{short_url}</a>"""
)
else:
# source_image = "Image not found"
source_image_url = ""
return f"""<tr><td>input image</td><td>{self.image_prediction_label}<br>({self.image_prediction_score:.2f}%)</td><td>{source_image_url}</td></tr>""" # noqa: E501
def create_governor_table(self):
rows = []
max_length = 30 # TODO: put this in configuration
rows.append(self.format_image_governor_row(max_length))
for _, row in self.aligned_paragraphs_df.iterrows():
if row["input"] is None:
continue
if row["source"] is None:
equal_idx_1 = equal_idx_2 = []
else:
# Get index of equal phrases in input and source sentences
equal_idx_1, equal_idx_2 = extract_equal_text(
row["input"],
row["source"],
)
self.governor_table.append(
[
row,
equal_idx_1,
equal_idx_2,
row["entities"],
],
)
formatted_row = self.format_text_governor_row(max_length)
rows.append(formatted_row)
table = "\n".join(rows)
return f"""
<h5>Comparison between input news and source news:</h5>
<table border="1" style="width:100%; text-align:left;">
<col style="width: 170px;">
<col style="width: 170px;">
<col style="width: 30px;">
<col style="width: 75px;">
<thead>
<tr>
<th>Input news</th>
<th>Source (URL in Originality)</th>
<th>Forensic</th>
<th>Originality</th>
</tr>
</thead>
<tbody>
{table}
</tbody>
</table>
<style>
"""
def format_text_governor_row(self, max_length=30):
input_sentences = ""
source_sentences = ""
source_text_urls = ""
urls = []
sentence_count = 0
entity_count = [0, 0] # to get index of [-2]
for row in self.governor_table:
if row[0]["input"] is None:
continue
if (
row[0]["source"] is not None and row[3] is not None
): # source is not empty
# highlight entities
input_sentence, highlight_idx_input = apply_highlight(
row[0]["input"],
row[3], # entities_with_colors
"input", # key
entity_count[
-2
], # since the last one is for current counting
)
source_sentence, highlight_idx_source = apply_highlight(
row[0]["source"],
row[3], # entities_with_colors
"source", # key
entity_count[
-2
], # since the last one is for current counting
)
# Color overlapping words
input_sentence = self.color_text(
input_sentence,
row[1],
highlight_idx_input,
) # text, index of highlight words
source_sentence = self.color_text(
source_sentence,
row[2],
highlight_idx_source,
) # text, index of highlight words
input_sentence = input_sentence.replace(
"span_style",
"span style",
).replace("1px_4px", "1px 4px")
source_sentence = source_sentence.replace(
"span_style",
"span style",
).replace("1px_4px", "1px 4px")
else:
if row[0]["source"] is None:
source_sentence = ""
else:
source_sentence = row[0]["source"]
input_sentence = row[0]["input"]
# convert score to HUMAN-based score:
input_sentences += input_sentence + "<br><br>"
source_sentences += source_sentence + "<br><br>"
url = row[0]["url"]
if url not in urls:
urls.append(url)
short_url = self.shorten_url(url, max_length)
source_text_urls += f"""<a href="{url}">{short_url}</a><br>"""
sentence_count += 1
if row[3] is not None:
entity_count.append(len(row[3]))
entity_count_text = self.get_entity_count_text(sum(entity_count))
return f"""
<tr>
<td>{input_sentences}</td>
<td>{source_sentences}</td>
<td>{self.text_prediction_label[0]}<br>
({self.text_prediction_score[0] * 100:.2f}%)<br><br>
{entity_count_text}</td>
<td>{source_text_urls}</td>
</tr>
"""
def format_image_governor_row(self, max_length=30):
if (
self.image_referent_url is not None
or self.image_referent_url != ""
):
source_image = f"""<img src="{self.image_referent_url}" width="100" height="150">""" # noqa: E501
short_url = self.shorten_url(self.image_referent_url, max_length)
source_image_url = (
f"""<a href="{self.image_referent_url}">{short_url}</a>"""
)
else:
source_image = "Image not found"
source_image_url = ""
return f"""<tr><td>input image</td><td>{source_image}</td><td>{self.image_prediction_label}<br>({self.image_prediction_score:.2f}%)</td><td>{source_image_url}</td></tr>""" # noqa: E501
def get_entity_count_text(self, entity_count):
if entity_count <= 0:
entity_count_text = ""
elif entity_count == 1:
entity_count_text = "with 1 altered entity"
else:
entity_count_text = "with altered entities"
return entity_count_text
def shorten_url(self, url, max_length=30):
if url is None:
return ""
if len(url) > max_length:
short_url = url[:max_length] + "..."
else:
short_url = url
return short_url
def color_text(self, text, colored_idx, highlighted_idx):
paragraph = ""
words = text.split()
starts, ends = self.extract_starts_ends(colored_idx)
starts, ends = self.filter_indices(starts, ends, highlighted_idx)
previous_end = 0
for start, end in zip(starts, ends):
paragraph += " ".join(words[previous_end:start])
equal_words = " ".join(words[start:end])
paragraph += f" <span style='color:#00FF00;'>{equal_words}</span> "
previous_end = end
paragraph += " ".join(words[previous_end:])
return paragraph
def extract_starts_ends(self, colored_idx):
starts = []
ends = []
for index in colored_idx:
starts.append(index["start"])
ends.append(index["end"])
return starts, ends
def filter_indices(self, starts, ends, ignore_indices):
"""
Filters start and end indices to exclude any indices present in the
ignore_indices list.
Args:
starts: A list of starting indices.
ends: A list of ending indices. Must be the same length as starts.
ignore_indices: A list of indices to exclude.
Returns:
A tuple of two lists: filtered_starts and filtered_ends.
Returns empty lists if the input is invalid
or if all ranges are filtered out.
Prints error messages for invalid input.
Examples:
starts = [0, 5, 10]
ends = [3, 7, 12]
ignore_indices = [1, 2, 11, 17]
# Output:
starts = [0, 3, 5, 10, 12]
ends = [0, 3, 7, 10, 12]
"""
if len(starts) != len(ends):
print(
"Error: The 'starts' and 'ends' lists must have the same length.", # noqa: E501
)
return [], []
filtered_starts = []
filtered_ends = []
for i in range(len(starts)):
start = starts[i]
end = ends[i]
if end < start:
print(
f"Error: End index {end} is less than start index {start} at position {i}.", # noqa: E501
)
return [], []
start_end = list(range(start, end + 1, 1))
start_end = list(set(start_end) - set(ignore_indices))
new_start, new_end = self.extract_sequences(start_end)
filtered_starts.extend(new_start)
filtered_ends.extend(new_end)
return filtered_starts, filtered_ends
def extract_sequences(self, numbers):
if len(numbers) == 1:
return [numbers[0]], [numbers[0]]
numbers.sort()
starts = []
ends = []
for i, number in enumerate(numbers):
if i == 0:
start = number
end = number
continue
if number - 1 == numbers[i - 1]:
end = number
else:
starts.append(start)
ends.append(end)
start = number
end = number
if i == len(numbers) - 1:
starts.append(start)
ends.append(end)
return starts, ends
|