File size: 8,291 Bytes
0827f9d
 
 
 
 
1ce1659
 
38fd181
 
 
1ce1659
 
38fd181
1ce1659
 
0827f9d
 
 
 
 
 
 
 
 
 
 
 
38fd181
 
1ce1659
 
38fd181
1ce1659
 
38fd181
1ce1659
38fd181
 
0827f9d
1ce1659
38fd181
0827f9d
1ce1659
0827f9d
 
 
38fd181
1ce1659
 
38fd181
0827f9d
 
 
 
 
 
 
 
 
 
 
 
 
1ce1659
0827f9d
 
38fd181
0827f9d
 
1ce1659
 
38fd181
1ce1659
0827f9d
 
 
 
 
 
 
 
 
 
38fd181
1ce1659
38fd181
 
1ce1659
 
38fd181
1ce1659
 
38fd181
1ce1659
 
38fd181
1ce1659
 
 
38fd181
1ce1659
 
 
 
38fd181
a5e8d12
38fd181
 
 
1ce1659
38fd181
1ce1659
 
a5e8d12
1ce1659
 
 
 
 
 
a5e8d12
38fd181
a5e8d12
38fd181
 
1ce1659
 
 
 
 
 
 
38fd181
1ce1659
 
 
38fd181
1ce1659
38fd181
1ce1659
 
38fd181
1ce1659
 
 
 
38fd181
a5e8d12
38fd181
 
 
1ce1659
38fd181
1ce1659
 
 
a5e8d12
1ce1659
38fd181
1ce1659
 
 
 
a5e8d12
 
38fd181
1ce1659
 
38fd181
a5e8d12
1ce1659
38fd181
1ce1659
 
38fd181
1ce1659
 
 
 
 
 
 
38fd181
1ce1659
 
38fd181
0827f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e3944
38fd181
26e3944
bfe6692
0827f9d
26e3944
 
38fd181
0827f9d
26e3944
38fd181
26e3944
 
0827f9d
 
26e3944
 
 
38fd181
0827f9d
 
26e3944
 
0827f9d
 
 
0260491
 
26e3944
 
38fd181
0827f9d
a6b0abd
 
 
 
0827f9d
a6b0abd
 
0827f9d
 
 
a6b0abd
 
 
 
 
 
 
 
 
 
0827f9d
a6b0abd
0827f9d
a6b0abd
0827f9d
a6b0abd
 
 
 
0827f9d
 
a6b0abd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
Author: Khanh Phan
Date: 2024-12-04
"""

import re
import string
from collections import Counter
from difflib import SequenceMatcher

from nltk.tokenize import word_tokenize
from nltk.util import ngrams
from sklearn.feature_extraction.text import TfidfVectorizer


def clean_text(text: str) -> str:
    """
    Cleans and preprocesses a given text string.

    Args:
        text (str): The input text to be cleaned.

    Returns:
        str: The cleaned and preprocessed text, containing the first 18 words.
    """
    # Define a set of punctuation characters to exclude,
    # exclude comma and period due to numbers
    punctuations = r"""!"#$%&'()*+-/:;<=>?@[\]^_`{|}~"""

    # Lowering text
    text = text.lower()

    # Removing punctuation
    text = "".join([c for c in text if c not in punctuations])

    # Removing whitespace and newlines
    text = re.sub(r"\s+", " ", text)

    # Replace £ with * because Google search doesn't recognize £
    text.replace("£", " * ")

    # Split the text into a list of words.
    words = text.split()

    # Join the first 18 words back into a string
    text = " ".join(words[:18])  # TODO: consider another number

    return text


def remove_punctuation(text: str) -> str:
    """
    Removes all punctuation characters from a string, except for periods (.).

    Args:
        text (str): The input string.

    Returns:
        str: The string with all punctuation characters removed,
            except for periods.
    """
    # Create a string containing all punctuation characters,
    # except for periods.
    punctuation_without_dot = string.punctuation.replace(".", "")

    # Create a translation table to remove the specified punctuation chars.
    translator = str.maketrans("", "", punctuation_without_dot)

    # Apply the translation table to the input text and return the result.
    return text.translate(translator)


def get_keywords(text, num_keywords=5):
    """
    Extracts the top k keywords from a document using the TF-IDF method.

    Args:
        text (str): The input text from which to extract keywords.
        num_keywords (int, optional): The number of top keywords to return.

    Returns:
        list: A list of the top keywords extracted from the text.
    """

    # Create a TF-IDF Vectorizer
    vectorizer = TfidfVectorizer(stop_words="english")

    # Fit and transform the text
    tfidf_matrix = vectorizer.fit_transform([text])

    # Get feature names (words)
    feature_names = vectorizer.get_feature_names_out()

    # Get TF-IDF scores
    tfidf_scores = tfidf_matrix.toarray()[0]

    # Sort words by TF-IDF score
    word_scores = list(zip(feature_names, tfidf_scores))
    word_scores.sort(key=lambda x: x[1], reverse=True)

    # Return top keywords
    return [word for word, score in word_scores[:num_keywords]]


def get_important_sentences(
    sentence: str,
    keywords: list[str],
    num_sentences: int = 3,
) -> list[str]:
    """
    Selects important sentences based on a list of keywords.

    Args:
        sentence (str): The input sentence.
        keywords (list[str]): List of important keywords.
        num_sentences (int): Number of sentences to return (default is 3).

    Returns:
        list: A list of important sentences.
    """
    # Clean and split the sentence into sentences
    sentences = [
        s.strip() for s in re.split(r"(?<=[.!?])\s+", sentence) if s.strip()
    ]

    # Calculate the importance score for each sentence
    sentence_scores = []
    for sentence in sentences:
        processed_sentence = clean_text(sentence)
        score = 0
        words = processed_sentence.lower().split()
        word_count = Counter(words)

        for keyword in keywords:
            if keyword.lower() in word_count:
                score += word_count[keyword.lower()]

        sentence_scores.append((sentence, score))

    # Sort sentences by their scores in descending order
    sentence_scores.sort(key=lambda x: x[1], reverse=True)

    # Return the top N sentences
    return [sentence for sentence, score in sentence_scores[:num_sentences]]


def extract_important_phrases(
    text: str,
    keywords: list[str],
    phrase_length: int = 5,
) -> list[str]:
    """
    Extracts important phrases based on a list of keywords.
    Phrase length is auto-determined, and overlapped parts are less than 20%.

    Args:
        text (str): The input text.
        keywords (list[str]): List of important keywords.
        phrase_length (int): Length of phrases to extract (default: 5 words).

    Returns:
        list: A list of important phrases.
    """
    # Tokenize the text into words
    words = word_tokenize(text.lower())

    # Determine phrase length (between 3 and 7 words)
    phrase_length = min(max(len(words) // 10, 5), 7)

    # Generate n-grams (phrases) from the text
    phrases = list(ngrams(words, phrase_length))

    important_phrases = []
    used_indices = set()

    for i, phrase in enumerate(phrases):
        # Check if the phrase contains any keyword
        if any(keyword.lower() in phrase for keyword in keywords):
            # Check overlap with previously selected phrases
            if not any(abs(i - j) < phrase_length * 0.8 for j in used_indices):
                important_phrases.append(clean_text(" ".join(phrase)))
                used_indices.add(i)

    return important_phrases


def extract_equal_text(text1: str, text2: str) -> tuple[list[int], list[int]]:
    """
    Extracts the indices of equal text segments between two strings.

    Args:
        text1 (str): The first input string.
        text2 (str): The second input string.

    Returns:
        tuple[
            list[dict{"start": int, "end": int}],
            list[dict{"start": int, "end": int}]
            ]
            - list: the start and end indices of equal segments in text1.
            - list: the start and end indices of equal segments in text2.
    """

    def cleanup(text: str) -> str:
        """
        Cleans up a text string by converting to lowercase
            and removing punctuation.

        Args:
            text (str): The input text.

        Returns:
            str: The cleaned text.
        """
        text = text.lower()
        text = text.translate(str.maketrans("", "", string.punctuation))
        return text

    # Clean and split the input texts into lists of words.
    splited_text1 = cleanup(text1).split()
    splited_text2 = cleanup(text2).split()

    # Create a SequenceMatcher object to compare the cleaned word lists.
    s = SequenceMatcher(None, splited_text1, splited_text2)

    equal_idx_1 = []
    equal_idx_2 = []

    # Split the original texts into lists of words (without cleaning).
    text1 = text1.split()
    text2 = text2.split()
    for tag, i1, i2, j1, j2 in s.get_opcodes():
        if tag == "equal":
            # Append the start and end indices of the equal segment
            # to the respective lists.
            equal_idx_1.append({"start": i1, "end": i2})
            equal_idx_2.append({"start": j1, "end": j2})

            # subtext_1 = " ".join(text1[i1:i2])
            # subtext_2 = " ".join(text2[j1:j2])
            # print(f'{tag:7}   a[{i1:2}:{i2:2}] --> b[{j1:2}:{j2:2}] '
            #       f'{subtext_1!r:>55} --> {subtext_2!r}')
    return equal_idx_1, equal_idx_2


def connect_consecutive_indexes(nums: list[int]) -> list[list[int, int]]:
    """
    Connects consecutive integers in a list.

    Args:
        nums (list): A list of integers.

    Returns:
        list: A list of lists,
            where each inner list represents a consecutive range.
            For example: [1, 2, 3, 5, 6] becomes [[1, 3], [5, 6]].
    """

    if not nums:  # Handle empty input
        return []

    result = []
    start = nums[0]
    end = nums[0]

    for i in range(1, len(nums)):
        # Check if the current number is consecutive to the previous end.
        if nums[i] == end + 1:
            end = nums[i]  # Extend the current range.
        else:
            # Add the current range to the result and start a new range.
            result.append([start, end])
            start = nums[i]
            end = nums[i]

    # Add the last range to the result.
    result.append([start, end])
    return result