MultiModelGPT / app.py
piyushgrover's picture
Update app.py
d3dc36c verified
raw
history blame
9.5 kB
import gradio as gr
import os
import time
from PIL import Image
import torch
import whisperx
from transformers import CLIPVisionModel, CLIPImageProcessor, AutoModelForCausalLM, AutoTokenizer
from models.vision_projector_model import VisionProjector
from config import VisionProjectorConfig, app_config as cfg
device = 'cuda' if torch.cuda.is_available() else 'cpu'
clip_model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
vision_projector = VisionProjector(VisionProjectorConfig())
ckpt = torch.load(cfg['vision_projector_file'], map_location=torch.device(device))
vision_projector.load_state_dict(ckpt['model_state_dict'])
phi_base_model = AutoModelForCausalLM.from_pretrained(
'microsoft/phi-2',
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float32,
trust_remote_code=True
# device_map=device_map,
)
from peft import PeftModel
phi_new_model = "models/phi_adapter"
phi_model = PeftModel.from_pretrained(phi_base_model, phi_new_model)
phi_model = phi_model.merge_and_unload().to(device)
'''compute_type = 'float32'
if device != 'cpu':
compute_type = 'float16'''
audi_model = whisperx.load_model("small", device, compute_type='float16')
tokenizer = AutoTokenizer.from_pretrained('microsoft/phi-2')
tokenizer.pad_token = tokenizer.unk_token
### app functions ##
context_added = False
query_added = False
context = None
context_type = ''
query = ''
bot_active = False
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def add_text(history, text):
global context, context_type, context_added, query, query_added
context_added = False
if not context_type and '</context>' not in text:
context = "**Please add context (upload image/audio or enter text followed by \</context\>"
context_type = 'error'
context_added = True
query_added = False
elif '</context>' in text:
context_type = 'text'
context_added = True
text = text.replace('</context>', ' ')
context = text
query_added = False
elif context_type in ['[text]', '[image]', '[audio]']:
query = 'Human### ' + text + '\n' + 'AI### '
query_added = True
context_added = False
else:
query_added = False
context_added = True
context = 'error'
context = "**Please provide a valid context**"
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def add_file(history, file):
global context_added, context, context_type, query_added
context = file
context_type = 'image'
context_added = True
query_added = False
history = history + [((file.name,), None)]
return history
def audio_upload(history, audio_file):
global context, context_type, context_added, query, query_added
if audio_file:
context_added = True
context_type = 'audio'
context = audio_file
query_added = False
history = history + [((audio_file,), None)]
else:
pass
return history
def preprocess_fn(history):
global context, context_added, query, context_type, query_added
if context_added:
if context_type == 'image':
image = Image.open(context)
inputs = clip_processor(images=image, return_tensors="pt")
x = clip_model(**inputs, output_hidden_states=True)
image_features = x.hidden_states[-2]
context = vision_projector(image_features)
elif context_type == 'audio':
audio_file = context
audio = whisperx.load_audio(audio_file)
result = audi_model.transcribe(audio, batch_size=1)
error = False
if result.get('language', None) and result.get('segments', None):
try:
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
except Exception as e:
error = True
print(result.get('language', None))
if not error and result.get('segments', []) and len(result["segments"]) > 0 and result["segments"][0].get('text', None):
text = result["segments"][0].get('text', '')
print(text)
context_type = 'audio'
context_added = True
context = text
query_added = False
print(context)
else:
error = True
else:
error = True
if error:
context_type = 'error'
context_added = True
context = "**Please provide a valid audio file / context**"
query_added = False
print("Here")
return history
def bot(history):
global context, context_added, query, context_type, query_added, bot_active
response = ''
if context_added:
context_added = False
if context_type == 'error':
response = context
query = ''
elif context_type in ['image', 'audio', 'text']:
response = ''
if context_type == 'audio':
response = 'Context: \n🗣 ' + '"_' + context.strip() + '_"\n\n'
response += "**Please proceed with your queries**"
query = ''
context_type = '[' + context_type + ']'
elif query_added:
query_added = False
if context_type == '[image]':
query_ids = tokenizer.encode(query)
query_ids = torch.tensor(query_ids, dtype=torch.int32).unsqueeze(0).to(device)
query_embeds = phi_model.get_input_embeddings()(query_ids)
inputs_embeds = torch.cat([context.to(device), query_embeds], dim=1)
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
bos_token_id=tokenizer.bos_token_id)
response = tokenizer.decode(out[0], skip_special_tokens=True)
elif context_type in ['[text]', '[audio]']:
input_text = context + query
input_tokens = tokenizer.encode(input_text)
input_ids = torch.tensor(input_tokens, dtype=torch.int32).unsqueeze(0).to(device)
inputs_embeds = phi_model.get_input_embeddings()(input_ids)
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
bos_token_id=tokenizer.bos_token_id)
response = tokenizer.decode(out[0], skip_special_tokens=True)
else:
query = ''
response = "**Please provide a valid context**"
if response:
bot_active = True
if history and len(history[-1]) > 1:
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
time.sleep(0.5)
bot_active = False
def clear_fn():
global context_added, context_type, context, query, query_added
context_added = False
context_type = ''
context = None
query = ''
query_added = False
return {
chatbot: None
}
with gr.Blocks() as app:
gr.Markdown(
"""
# ContextGPT - A Multimodal chatbot
### Upload image or audio to add a context. And then ask questions.
### You can also enter text followed by \</context\> to set the context.
"""
)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False
)
with gr.Row():
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Press enter to send ",
container=False,
)
with gr.Row():
aud = gr.Audio(sources=['microphone', 'upload'], type='filepath', max_length=100, show_download_button=True,
show_share_button=True)
btn = gr.UploadButton("📷", file_types=["image"])
with gr.Row():
clear = gr.Button("Clear")
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
preprocess_fn, chatbot, chatbot
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
preprocess_fn, chatbot, chatbot
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
chatbot.like(print_like_dislike, None, None)
clear.click(clear_fn, None, chatbot, queue=False)
aud.stop_recording(audio_upload, [chatbot, aud], [chatbot], queue=False).then(
preprocess_fn, chatbot, chatbot
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
aud.upload(audio_upload, [chatbot, aud], [chatbot], queue=False).then(
preprocess_fn, chatbot, chatbot
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
app.queue()
app.launch()