Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,296 @@
|
|
1 |
-
import torch
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
model_name = "microsoft/phi-2"
|
8 |
-
#device_map = {"": 0}
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
low_cpu_mem_usage=True,
|
14 |
return_dict=True,
|
15 |
-
torch_dtype=torch.
|
16 |
-
trust_remote_code=True
|
17 |
-
device_map=
|
18 |
)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
tokenizer.padding_side = "right"
|
29 |
|
30 |
-
|
31 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=500, truncation=True)
|
32 |
|
|
|
|
|
33 |
|
34 |
-
def chat(user_input, history=[]):
|
35 |
-
"""Generates a response from the fine-tuned Phi-2 model with conversation memory."""
|
36 |
-
'''
|
37 |
-
# Format conversation history
|
38 |
-
formatted_history = ""
|
39 |
-
for usr, bot in history:
|
40 |
-
formatted_history += f"\n\n### User:\n{usr}\n\n### Assistant:\n{bot}"
|
41 |
|
42 |
-
|
43 |
-
prompt = f"{formatted_history}\n\n### User:\n{user_input}\n\n### Assistant:\n"
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
return answer
|
53 |
-
'''
|
54 |
-
prompt = f"\n\n### User:\n{user_input}\n\n### Assistant:\n"
|
55 |
-
response = generator(prompt, max_length=128, do_sample=True, truncation=True)
|
56 |
-
answer = response[0]["generated_text"].split("### Assistant:\n")[-1].strip()
|
57 |
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
|
|
|
63 |
|
64 |
-
# β
Create Gradio Chat Interface
|
65 |
-
chatbot = gr.ChatInterface(
|
66 |
-
fn=chat,
|
67 |
-
title="Fine-Tuned Phi-2 Conversational Chat Assistant",
|
68 |
-
description="π Chat with a fine-tuned Phi-2 model. It remembers the conversation!",
|
69 |
-
theme="compact",
|
70 |
-
)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import whisperx
|
7 |
+
|
8 |
+
|
9 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, AutoModelForCausalLM, AutoTokenizer
|
10 |
+
from models.vision_projector_model import VisionProjector
|
11 |
+
from config import VisionProjectorConfig, app_config as cfg
|
12 |
|
13 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
14 |
|
15 |
+
clip_model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
|
16 |
+
clip_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
17 |
+
|
18 |
+
vision_projector = VisionProjector(VisionProjectorConfig())
|
19 |
+
ckpt = torch.load(cfg['vision_projector_file'], map_location=torch.device(device))
|
20 |
+
vision_projector.load_state_dict(ckpt['model_state_dict'])
|
21 |
+
|
22 |
+
phi_base_model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
'microsoft/phi-2',
|
24 |
low_cpu_mem_usage=True,
|
25 |
return_dict=True,
|
26 |
+
torch_dtype=torch.float32,
|
27 |
+
trust_remote_code=True
|
28 |
+
# device_map=device_map,
|
29 |
)
|
30 |
|
31 |
+
from peft import PeftModel
|
32 |
+
phi_new_model = "models/phi_adapter"
|
33 |
+
phi_model = PeftModel.from_pretrained(phi_base_model, phi_new_model)
|
34 |
+
phi_model = phi_model.merge_and_unload().to(device)
|
35 |
|
36 |
+
'''compute_type = 'float32'
|
37 |
+
if device != 'cpu':
|
38 |
+
compute_type = 'float16'''
|
|
|
39 |
|
40 |
+
audi_model = whisperx.load_model("small", device, compute_type='float16')
|
|
|
41 |
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained('microsoft/phi-2')
|
43 |
+
tokenizer.pad_token = tokenizer.unk_token
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
### app functions ##
|
|
|
47 |
|
48 |
+
context_added = False
|
49 |
+
query_added = False
|
50 |
+
context = None
|
51 |
+
context_type = ''
|
52 |
+
query = ''
|
53 |
+
bot_active = False
|
54 |
|
55 |
+
def print_like_dislike(x: gr.LikeData):
|
56 |
+
print(x.index, x.value, x.liked)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
def add_text(history, text):
|
60 |
+
global context, context_type, context_added, query, query_added
|
61 |
+
context_added = False
|
62 |
+
if not context_type and '</context>' not in text:
|
63 |
+
context = "**Please add context (upload image/audio or enter text followed by \</context\>"
|
64 |
+
context_type = 'error'
|
65 |
+
context_added = True
|
66 |
+
query_added = False
|
67 |
+
|
68 |
+
elif '</context>' in text:
|
69 |
+
context_type = 'text'
|
70 |
+
context_added = True
|
71 |
+
text = text.replace('</context>', ' ')
|
72 |
+
context = text
|
73 |
+
query_added = False
|
74 |
+
elif context_type in ['[text]', '[image]', '[audio]']:
|
75 |
+
query = 'Human### ' + text + '\n' + 'AI### '
|
76 |
+
query_added = True
|
77 |
+
context_added = False
|
78 |
+
else:
|
79 |
+
query_added = False
|
80 |
+
context_added = True
|
81 |
+
context = 'error'
|
82 |
+
context = "**Please provide a valid context**"
|
83 |
|
84 |
+
history = history + [(text, None)]
|
85 |
|
86 |
+
return history, gr.Textbox(value="", interactive=False)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
def add_file(history, file):
|
90 |
+
global context_added, context, context_type, query_added
|
91 |
+
|
92 |
+
context = file
|
93 |
+
context_type = 'image'
|
94 |
+
context_added = True
|
95 |
+
query_added = False
|
96 |
+
|
97 |
+
history = history + [((file.name,), None)]
|
98 |
+
|
99 |
+
return history
|
100 |
+
|
101 |
+
|
102 |
+
def audio_upload(history, audio_file):
|
103 |
+
global context, context_type, context_added, query, query_added
|
104 |
+
|
105 |
+
if audio_file:
|
106 |
+
context_added = True
|
107 |
+
context_type = 'audio'
|
108 |
+
context = audio_file
|
109 |
+
query_added = False
|
110 |
+
history = history + [((audio_file,), None)]
|
111 |
+
|
112 |
+
else:
|
113 |
+
pass
|
114 |
+
|
115 |
+
return history
|
116 |
+
|
117 |
+
|
118 |
+
def preprocess_fn(history):
|
119 |
+
global context, context_added, query, context_type, query_added
|
120 |
+
|
121 |
+
if context_added:
|
122 |
+
if context_type == 'image':
|
123 |
+
image = Image.open(context)
|
124 |
+
inputs = clip_processor(images=image, return_tensors="pt")
|
125 |
+
|
126 |
+
x = clip_model(**inputs, output_hidden_states=True)
|
127 |
+
image_features = x.hidden_states[-2]
|
128 |
+
|
129 |
+
context = vision_projector(image_features)
|
130 |
+
|
131 |
+
elif context_type == 'audio':
|
132 |
+
audio_file = context
|
133 |
+
audio = whisperx.load_audio(audio_file)
|
134 |
+
result = audi_model.transcribe(audio, batch_size=1)
|
135 |
+
|
136 |
+
error = False
|
137 |
+
if result.get('language', None) and result.get('segments', None):
|
138 |
+
try:
|
139 |
+
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
140 |
+
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
|
141 |
+
except Exception as e:
|
142 |
+
error = True
|
143 |
+
|
144 |
+
print(result.get('language', None))
|
145 |
+
if not error and result.get('segments', []) and len(result["segments"]) > 0 and result["segments"][0].get('text', None):
|
146 |
+
text = result["segments"][0].get('text', '')
|
147 |
+
print(text)
|
148 |
+
context_type = 'audio'
|
149 |
+
context_added = True
|
150 |
+
context = text
|
151 |
+
query_added = False
|
152 |
+
print(context)
|
153 |
+
else:
|
154 |
+
error = True
|
155 |
+
else:
|
156 |
+
error = True
|
157 |
+
|
158 |
+
if error:
|
159 |
+
context_type = 'error'
|
160 |
+
context_added = True
|
161 |
+
context = "**Please provide a valid audio file / context**"
|
162 |
+
query_added = False
|
163 |
+
|
164 |
+
print("Here")
|
165 |
+
return history
|
166 |
+
|
167 |
+
def bot(history):
|
168 |
+
global context, context_added, query, context_type, query_added, bot_active
|
169 |
+
|
170 |
+
response = ''
|
171 |
+
if context_added:
|
172 |
+
context_added = False
|
173 |
+
if context_type == 'error':
|
174 |
+
response = context
|
175 |
+
query = ''
|
176 |
+
|
177 |
+
elif context_type in ['image', 'audio', 'text']:
|
178 |
+
response = ''
|
179 |
+
if context_type == 'audio':
|
180 |
+
response = 'Context: \nπ£ ' + '"_' + context.strip() + '_"\n\n'
|
181 |
+
|
182 |
+
response += "**Please proceed with your queries**"
|
183 |
+
query = ''
|
184 |
+
context_type = '[' + context_type + ']'
|
185 |
+
elif query_added:
|
186 |
+
query_added = False
|
187 |
+
if context_type == '[image]':
|
188 |
+
query_ids = tokenizer.encode(query)
|
189 |
+
query_ids = torch.tensor(query_ids, dtype=torch.int32).unsqueeze(0).to(device)
|
190 |
+
query_embeds = phi_model.get_input_embeddings()(query_ids)
|
191 |
+
inputs_embeds = torch.cat([context.to(device), query_embeds], dim=1)
|
192 |
+
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
|
193 |
+
bos_token_id=tokenizer.bos_token_id)
|
194 |
+
response = tokenizer.decode(out[0], skip_special_tokens=True)
|
195 |
+
elif context_type in ['[text]', '[audio]']:
|
196 |
+
input_text = context + query
|
197 |
+
|
198 |
+
input_tokens = tokenizer.encode(input_text)
|
199 |
+
input_ids = torch.tensor(input_tokens, dtype=torch.int32).unsqueeze(0).to(device)
|
200 |
+
inputs_embeds = phi_model.get_input_embeddings()(input_ids)
|
201 |
+
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
|
202 |
+
bos_token_id=tokenizer.bos_token_id)
|
203 |
+
response = tokenizer.decode(out[0], skip_special_tokens=True)
|
204 |
+
else:
|
205 |
+
query = ''
|
206 |
+
response = "**Please provide a valid context**"
|
207 |
+
|
208 |
+
if response:
|
209 |
+
bot_active = True
|
210 |
+
if history and len(history[-1]) > 1:
|
211 |
+
history[-1][1] = ""
|
212 |
+
for character in response:
|
213 |
+
history[-1][1] += character
|
214 |
+
time.sleep(0.05)
|
215 |
+
yield history
|
216 |
+
|
217 |
+
time.sleep(0.5)
|
218 |
+
bot_active = False
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
def clear_fn():
|
223 |
+
global context_added, context_type, context, query, query_added
|
224 |
+
context_added = False
|
225 |
+
context_type = ''
|
226 |
+
context = None
|
227 |
+
query = ''
|
228 |
+
query_added = False
|
229 |
+
|
230 |
+
return {
|
231 |
+
chatbot: None
|
232 |
+
}
|
233 |
+
|
234 |
+
|
235 |
+
with gr.Blocks() as app:
|
236 |
+
gr.Markdown(
|
237 |
+
"""
|
238 |
+
# ContextGPT - A Multimodal chatbot
|
239 |
+
### Upload image or audio to add a context. And then ask questions.
|
240 |
+
### You can also enter text followed by \</context\> to set the context.
|
241 |
+
"""
|
242 |
+
)
|
243 |
+
|
244 |
+
chatbot = gr.Chatbot(
|
245 |
+
[],
|
246 |
+
elem_id="chatbot",
|
247 |
+
bubble_full_width=False
|
248 |
+
)
|
249 |
+
|
250 |
+
with gr.Row():
|
251 |
+
txt = gr.Textbox(
|
252 |
+
scale=4,
|
253 |
+
show_label=False,
|
254 |
+
placeholder="Press enter to send ",
|
255 |
+
container=False,
|
256 |
+
)
|
257 |
+
|
258 |
+
with gr.Row():
|
259 |
+
aud = gr.Audio(sources=['microphone', 'upload'], type='filepath', max_length=100, show_download_button=True,
|
260 |
+
show_share_button=True)
|
261 |
+
btn = gr.UploadButton("π·", file_types=["image"])
|
262 |
+
|
263 |
+
with gr.Row():
|
264 |
+
clear = gr.Button("Clear")
|
265 |
+
|
266 |
+
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
267 |
+
preprocess_fn, chatbot, chatbot
|
268 |
+
).then(
|
269 |
+
bot, chatbot, chatbot, api_name="bot_response"
|
270 |
+
)
|
271 |
+
|
272 |
+
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
273 |
+
|
274 |
+
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
|
275 |
+
preprocess_fn, chatbot, chatbot
|
276 |
+
).then(
|
277 |
+
bot, chatbot, chatbot, api_name="bot_response"
|
278 |
+
)
|
279 |
+
|
280 |
+
chatbot.like(print_like_dislike, None, None)
|
281 |
+
clear.click(clear_fn, None, chatbot, queue=False)
|
282 |
+
|
283 |
+
aud.stop_recording(audio_upload, [chatbot, aud], [chatbot], queue=False).then(
|
284 |
+
preprocess_fn, chatbot, chatbot
|
285 |
+
).then(
|
286 |
+
bot, chatbot, chatbot, api_name="bot_response"
|
287 |
+
)
|
288 |
+
|
289 |
+
aud.upload(audio_upload, [chatbot, aud], [chatbot], queue=False).then(
|
290 |
+
preprocess_fn, chatbot, chatbot
|
291 |
+
).then(
|
292 |
+
bot, chatbot, chatbot, api_name="bot_response"
|
293 |
+
)
|
294 |
+
|
295 |
+
app.queue()
|
296 |
+
app.launch()
|