MultiModelGPT / config.py
piyushgrover's picture
new files
7396aab
raw
history blame
4.84 kB
import torch
from transformers import PretrainedConfig, BitsAndBytesConfig
import math
from typing import Optional
class VisionProjectorConfig(PretrainedConfig):
def __init__(
self,
input_dim=768,
hidden_dim=256,
num_tokens=1,
output_dim=2560,
**kwargs
):
#super.__init__(**kwargs)
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.num_tokens = num_tokens
self.kwargs = kwargs
class CustomPhiConfig(PretrainedConfig):
model_type = "phi-msft"
attribute_map = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size: int = 51200,
n_positions: int = 2048,
n_embd: int = 2560,
n_layer: int = 32,
n_inner: Optional[int] = None,
n_head: int = 32,
n_head_kv: Optional[int] = None,
rotary_dim: Optional[int] = 32,
activation_function: Optional[str] = "gelu_new",
flash_attn: bool = False,
flash_rotary: bool = False,
fused_dense: bool = False,
attn_pdrop: float = 0.0,
embd_pdrop: float = 0.0,
resid_pdrop: float = 0.1,
layer_norm_epsilon: float = 1e-05,
initializer_range: float = 0.02,
tie_word_embeddings: bool = False,
pad_vocab_size_multiple: int = 64,
**kwargs
) -> None:
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_inner = n_inner
self.n_head = n_head
self.n_head_kv = n_head_kv
self.rotary_dim = min(rotary_dim, n_embd // n_head)
self.activation_function = activation_function
self.flash_attn = flash_attn
self.flash_rotary = flash_rotary
self.fused_dense = fused_dense
self.attn_pdrop = attn_pdrop
self.embd_pdrop = embd_pdrop
self.resid_pdrop = resid_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class CLIPVisionToPhiConfig(PretrainedConfig):
def __init__(self,
vision_projector_config: VisionProjectorConfig,
phi_config: CustomPhiConfig,
**kwargs
):
#super().__init__(**kwargs)
self.vision_projector_config = vision_projector_config
self.phi_config = phi_config
self.tokenizer = kwargs.get('tokenizer')
self.freeze_phi_model = True
'''
phi_config_obj = CustomPhiConfig(
**{
"_name_or_path": "microsoft/phi-2",
"architectures": [
"PhiForCausalLM"
],
"auto_map": {
"AutoConfig": "configuration_phi.PhiConfig",
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
},
"img_processor": None,
"model_type": "phi-msft",
"torch_dtype": "float16",
"transformers_version": "4.35.2"
}
)
'''
from peft import LoraConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"dense",
"fc1",
"fc2"
]
)
class MultiInstructModelConfig(PretrainedConfig):
def __init__(self,
vision_projector_config: Optional[VisionProjectorConfig] = None,
**kwargs
):
self.vision_projector_config = vision_projector_config
self.quantization_config = bnb_config
self.peft_config = peft_config
self.tokenizer = kwargs.get('tokenizer')
self.freeze_vision_projector = True
extra = dict(
num_epochs=1,
resume=False,
data_dir='../data',
checkpoint_dir='../checkpoints',
max_seqlen=80,
batch_size=2,
live_image_processing=True,
vision_projector_file='/Users/piyushgrover/Downloads/old_vt_proj/vp_ckpt_0.pth',
validation_phase=False
)
qlora_config = dict(
num_steps=1000,
max_seqlen=512,
max_caption_len=100,
batch_size=8,
micro_batch_size=2,
data_dir='../data',
output_dir="./results",
vision_model=True,
vision_projector_file='models/vision_projector/vp_ckpt_0.pth',
resume=False
)