Spaces:
Paused
Paused
import torch | |
from transformers import PretrainedConfig, BitsAndBytesConfig | |
import math | |
from typing import Optional | |
class VisionProjectorConfig(PretrainedConfig): | |
def __init__( | |
self, | |
input_dim=768, | |
hidden_dim=256, | |
num_tokens=1, | |
output_dim=2560, | |
**kwargs | |
): | |
#super.__init__(**kwargs) | |
self.input_dim = input_dim | |
self.hidden_dim = hidden_dim | |
self.output_dim = output_dim | |
self.num_tokens = num_tokens | |
self.kwargs = kwargs | |
class CustomPhiConfig(PretrainedConfig): | |
model_type = "phi-msft" | |
attribute_map = { | |
"max_position_embeddings": "n_positions", | |
"hidden_size": "n_embd", | |
"num_attention_heads": "n_head", | |
"num_hidden_layers": "n_layer", | |
} | |
def __init__( | |
self, | |
vocab_size: int = 51200, | |
n_positions: int = 2048, | |
n_embd: int = 2560, | |
n_layer: int = 32, | |
n_inner: Optional[int] = None, | |
n_head: int = 32, | |
n_head_kv: Optional[int] = None, | |
rotary_dim: Optional[int] = 32, | |
activation_function: Optional[str] = "gelu_new", | |
flash_attn: bool = False, | |
flash_rotary: bool = False, | |
fused_dense: bool = False, | |
attn_pdrop: float = 0.0, | |
embd_pdrop: float = 0.0, | |
resid_pdrop: float = 0.1, | |
layer_norm_epsilon: float = 1e-05, | |
initializer_range: float = 0.02, | |
tie_word_embeddings: bool = False, | |
pad_vocab_size_multiple: int = 64, | |
**kwargs | |
) -> None: | |
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_inner = n_inner | |
self.n_head = n_head | |
self.n_head_kv = n_head_kv | |
self.rotary_dim = min(rotary_dim, n_embd // n_head) | |
self.activation_function = activation_function | |
self.flash_attn = flash_attn | |
self.flash_rotary = flash_rotary | |
self.fused_dense = fused_dense | |
self.attn_pdrop = attn_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.resid_pdrop = resid_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) | |
class CLIPVisionToPhiConfig(PretrainedConfig): | |
def __init__(self, | |
vision_projector_config: VisionProjectorConfig, | |
phi_config: CustomPhiConfig, | |
**kwargs | |
): | |
#super().__init__(**kwargs) | |
self.vision_projector_config = vision_projector_config | |
self.phi_config = phi_config | |
self.tokenizer = kwargs.get('tokenizer') | |
self.freeze_phi_model = True | |
''' | |
phi_config_obj = CustomPhiConfig( | |
**{ | |
"_name_or_path": "microsoft/phi-2", | |
"architectures": [ | |
"PhiForCausalLM" | |
], | |
"auto_map": { | |
"AutoConfig": "configuration_phi.PhiConfig", | |
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM" | |
}, | |
"img_processor": None, | |
"model_type": "phi-msft", | |
"torch_dtype": "float16", | |
"transformers_version": "4.35.2" | |
} | |
) | |
''' | |
from peft import LoraConfig | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.float16 | |
) | |
peft_config = LoraConfig( | |
lora_alpha=16, | |
lora_dropout=0.1, | |
r=64, | |
bias="none", | |
task_type="CAUSAL_LM", | |
target_modules=[ | |
"q_proj", | |
"k_proj", | |
"v_proj", | |
"dense", | |
"fc1", | |
"fc2" | |
] | |
) | |
class MultiInstructModelConfig(PretrainedConfig): | |
def __init__(self, | |
vision_projector_config: Optional[VisionProjectorConfig] = None, | |
**kwargs | |
): | |
self.vision_projector_config = vision_projector_config | |
self.quantization_config = bnb_config | |
self.peft_config = peft_config | |
self.tokenizer = kwargs.get('tokenizer') | |
self.freeze_vision_projector = True | |
extra = dict( | |
num_epochs=1, | |
resume=False, | |
data_dir='../data', | |
checkpoint_dir='../checkpoints', | |
max_seqlen=80, | |
batch_size=2, | |
live_image_processing=True, | |
vision_projector_file='/Users/piyushgrover/Downloads/old_vt_proj/vp_ckpt_0.pth', | |
validation_phase=False | |
) | |
qlora_config = dict( | |
num_steps=1000, | |
max_seqlen=512, | |
max_caption_len=100, | |
batch_size=8, | |
micro_batch_size=2, | |
data_dir='../data', | |
output_dir="./results", | |
vision_model=True, | |
vision_projector_file='models/vision_projector/vp_ckpt_0.pth', | |
resume=False | |
) |