File size: 4,839 Bytes
7396aab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
from transformers import PretrainedConfig, BitsAndBytesConfig
import math
from typing import Optional

class VisionProjectorConfig(PretrainedConfig):
    def __init__(
            self,
            input_dim=768,
            hidden_dim=256,
            num_tokens=1,
            output_dim=2560,
            **kwargs
    ):
        #super.__init__(**kwargs)
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.num_tokens = num_tokens
        self.kwargs = kwargs


class CustomPhiConfig(PretrainedConfig):
    model_type = "phi-msft"
    attribute_map = {
        "max_position_embeddings": "n_positions",
        "hidden_size": "n_embd",
        "num_attention_heads": "n_head",
        "num_hidden_layers": "n_layer",
    }

    def __init__(
            self,
            vocab_size: int = 51200,
            n_positions: int = 2048,
            n_embd: int = 2560,
            n_layer: int = 32,
            n_inner: Optional[int] = None,
            n_head: int = 32,
            n_head_kv: Optional[int] = None,
            rotary_dim: Optional[int] = 32,
            activation_function: Optional[str] = "gelu_new",
            flash_attn: bool = False,
            flash_rotary: bool = False,
            fused_dense: bool = False,
            attn_pdrop: float = 0.0,
            embd_pdrop: float = 0.0,
            resid_pdrop: float = 0.1,
            layer_norm_epsilon: float = 1e-05,
            initializer_range: float = 0.02,
            tie_word_embeddings: bool = False,
            pad_vocab_size_multiple: int = 64,
            **kwargs
    ) -> None:
        self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_inner = n_inner
        self.n_head = n_head
        self.n_head_kv = n_head_kv
        self.rotary_dim = min(rotary_dim, n_embd // n_head)
        self.activation_function = activation_function
        self.flash_attn = flash_attn
        self.flash_rotary = flash_rotary
        self.fused_dense = fused_dense
        self.attn_pdrop = attn_pdrop
        self.embd_pdrop = embd_pdrop
        self.resid_pdrop = resid_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range

        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)


class CLIPVisionToPhiConfig(PretrainedConfig):
    def __init__(self,
                 vision_projector_config: VisionProjectorConfig,
                 phi_config: CustomPhiConfig,
                 **kwargs
                 ):

        #super().__init__(**kwargs)

        self.vision_projector_config = vision_projector_config
        self.phi_config = phi_config
        self.tokenizer = kwargs.get('tokenizer')
        self.freeze_phi_model = True


'''
phi_config_obj = CustomPhiConfig(
    **{
      "_name_or_path": "microsoft/phi-2",
      "architectures": [
        "PhiForCausalLM"
      ],
      "auto_map": {
        "AutoConfig": "configuration_phi.PhiConfig",
        "AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
      },
      "img_processor": None,
      "model_type": "phi-msft",
      "torch_dtype": "float16",
      "transformers_version": "4.35.2"
    }

)

'''
from peft import LoraConfig

bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16
)

peft_config = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.1,
    r=64,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=[
        "q_proj",
        "k_proj",
        "v_proj",
        "dense",
        "fc1",
        "fc2"
    ]
)

class MultiInstructModelConfig(PretrainedConfig):
    def __init__(self,
                 vision_projector_config: Optional[VisionProjectorConfig] = None,
                 **kwargs
                 ):

        self.vision_projector_config = vision_projector_config
        self.quantization_config = bnb_config

        self.peft_config = peft_config

        self.tokenizer = kwargs.get('tokenizer')
        self.freeze_vision_projector = True


extra = dict(
    num_epochs=1,
    resume=False,
    data_dir='../data',
    checkpoint_dir='../checkpoints',
    max_seqlen=80,
    batch_size=2,
    live_image_processing=True,
    vision_projector_file='/Users/piyushgrover/Downloads/old_vt_proj/vp_ckpt_0.pth',
    validation_phase=False
)

qlora_config = dict(
    num_steps=1000,
    max_seqlen=512,
    max_caption_len=100,
    batch_size=8,
    micro_batch_size=2,
    data_dir='../data',
    output_dir="./results",
    vision_model=True,
    vision_projector_file='models/vision_projector/vp_ckpt_0.pth',
    resume=False
)