Spaces:
Paused
Paused
File size: 9,498 Bytes
632fd1a d3dc36c f414499 d3dc36c f414499 d3dc36c f414499 d3dc36c f414499 d3dc36c f414499 d3dc36c fe18df5 d3dc36c f414499 d3dc36c f414499 d3dc36c f414499 d3dc36c f414499 d3dc36c f414499 d3dc36c fe18df5 d3dc36c fe18df5 d3dc36c fe18df5 f414499 d3dc36c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import gradio as gr
import os
import time
from PIL import Image
import torch
import whisperx
from transformers import CLIPVisionModel, CLIPImageProcessor, AutoModelForCausalLM, AutoTokenizer
from models.vision_projector_model import VisionProjector
from config import VisionProjectorConfig, app_config as cfg
device = 'cuda' if torch.cuda.is_available() else 'cpu'
clip_model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
vision_projector = VisionProjector(VisionProjectorConfig())
ckpt = torch.load(cfg['vision_projector_file'], map_location=torch.device(device))
vision_projector.load_state_dict(ckpt['model_state_dict'])
phi_base_model = AutoModelForCausalLM.from_pretrained(
'microsoft/phi-2',
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float32,
trust_remote_code=True
# device_map=device_map,
)
from peft import PeftModel
phi_new_model = "models/phi_adapter"
phi_model = PeftModel.from_pretrained(phi_base_model, phi_new_model)
phi_model = phi_model.merge_and_unload().to(device)
'''compute_type = 'float32'
if device != 'cpu':
compute_type = 'float16'''
audi_model = whisperx.load_model("small", device, compute_type='float16')
tokenizer = AutoTokenizer.from_pretrained('microsoft/phi-2')
tokenizer.pad_token = tokenizer.unk_token
### app functions ##
context_added = False
query_added = False
context = None
context_type = ''
query = ''
bot_active = False
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def add_text(history, text):
global context, context_type, context_added, query, query_added
context_added = False
if not context_type and '</context>' not in text:
context = "**Please add context (upload image/audio or enter text followed by \</context\>"
context_type = 'error'
context_added = True
query_added = False
elif '</context>' in text:
context_type = 'text'
context_added = True
text = text.replace('</context>', ' ')
context = text
query_added = False
elif context_type in ['[text]', '[image]', '[audio]']:
query = 'Human### ' + text + '\n' + 'AI### '
query_added = True
context_added = False
else:
query_added = False
context_added = True
context = 'error'
context = "**Please provide a valid context**"
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def add_file(history, file):
global context_added, context, context_type, query_added
context = file
context_type = 'image'
context_added = True
query_added = False
history = history + [((file.name,), None)]
return history
def audio_upload(history, audio_file):
global context, context_type, context_added, query, query_added
if audio_file:
context_added = True
context_type = 'audio'
context = audio_file
query_added = False
history = history + [((audio_file,), None)]
else:
pass
return history
def preprocess_fn(history):
global context, context_added, query, context_type, query_added
if context_added:
if context_type == 'image':
image = Image.open(context)
inputs = clip_processor(images=image, return_tensors="pt")
x = clip_model(**inputs, output_hidden_states=True)
image_features = x.hidden_states[-2]
context = vision_projector(image_features)
elif context_type == 'audio':
audio_file = context
audio = whisperx.load_audio(audio_file)
result = audi_model.transcribe(audio, batch_size=1)
error = False
if result.get('language', None) and result.get('segments', None):
try:
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
except Exception as e:
error = True
print(result.get('language', None))
if not error and result.get('segments', []) and len(result["segments"]) > 0 and result["segments"][0].get('text', None):
text = result["segments"][0].get('text', '')
print(text)
context_type = 'audio'
context_added = True
context = text
query_added = False
print(context)
else:
error = True
else:
error = True
if error:
context_type = 'error'
context_added = True
context = "**Please provide a valid audio file / context**"
query_added = False
print("Here")
return history
def bot(history):
global context, context_added, query, context_type, query_added, bot_active
response = ''
if context_added:
context_added = False
if context_type == 'error':
response = context
query = ''
elif context_type in ['image', 'audio', 'text']:
response = ''
if context_type == 'audio':
response = 'Context: \n🗣 ' + '"_' + context.strip() + '_"\n\n'
response += "**Please proceed with your queries**"
query = ''
context_type = '[' + context_type + ']'
elif query_added:
query_added = False
if context_type == '[image]':
query_ids = tokenizer.encode(query)
query_ids = torch.tensor(query_ids, dtype=torch.int32).unsqueeze(0).to(device)
query_embeds = phi_model.get_input_embeddings()(query_ids)
inputs_embeds = torch.cat([context.to(device), query_embeds], dim=1)
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
bos_token_id=tokenizer.bos_token_id)
response = tokenizer.decode(out[0], skip_special_tokens=True)
elif context_type in ['[text]', '[audio]']:
input_text = context + query
input_tokens = tokenizer.encode(input_text)
input_ids = torch.tensor(input_tokens, dtype=torch.int32).unsqueeze(0).to(device)
inputs_embeds = phi_model.get_input_embeddings()(input_ids)
out = phi_model.generate(inputs_embeds=inputs_embeds, min_new_tokens=10, max_new_tokens=50,
bos_token_id=tokenizer.bos_token_id)
response = tokenizer.decode(out[0], skip_special_tokens=True)
else:
query = ''
response = "**Please provide a valid context**"
if response:
bot_active = True
if history and len(history[-1]) > 1:
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
time.sleep(0.5)
bot_active = False
def clear_fn():
global context_added, context_type, context, query, query_added
context_added = False
context_type = ''
context = None
query = ''
query_added = False
return {
chatbot: None
}
with gr.Blocks() as app:
gr.Markdown(
"""
# ContextGPT - A Multimodal chatbot
### Upload image or audio to add a context. And then ask questions.
### You can also enter text followed by \</context\> to set the context.
"""
)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False
)
with gr.Row():
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Press enter to send ",
container=False,
)
with gr.Row():
aud = gr.Audio(sources=['microphone', 'upload'], type='filepath', max_length=100, show_download_button=True,
show_share_button=True)
btn = gr.UploadButton("📷", file_types=["image"])
with gr.Row():
clear = gr.Button("Clear")
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
preprocess_fn, chatbot, chatbot
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
preprocess_fn, chatbot, chatbot
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
chatbot.like(print_like_dislike, None, None)
clear.click(clear_fn, None, chatbot, queue=False)
aud.stop_recording(audio_upload, [chatbot, aud], [chatbot], queue=False).then(
preprocess_fn, chatbot, chatbot
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
aud.upload(audio_upload, [chatbot, aud], [chatbot], queue=False).then(
preprocess_fn, chatbot, chatbot
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
app.queue()
app.launch() |