Spaces:
Running
Running
File size: 39,261 Bytes
7e14e6f 1254c79 7e14e6f 03eddb7 4673e91 261f952 367d42f 08fb3e7 4ff6c1a a6e9232 d5eb93b de89832 7844008 de89832 7b14387 b552089 7b14387 b552089 d5eb93b 29f8d5d a25369d 7b14387 29f8d5d b552089 29f8d5d a25369d 29f8d5d a25369d 29f8d5d e3e54f2 29f8d5d e3e54f2 888b837 a25369d 29f8d5d a25369d 29f8d5d a25369d e3e54f2 29f8d5d e3e54f2 29f8d5d e3e54f2 29f8d5d a25369d 29f8d5d 888b837 e3e54f2 888b837 29f8d5d 888b837 e3e54f2 888b837 29f8d5d 888b837 e3e54f2 888b837 29f8d5d 888b837 29f8d5d 888b837 29f8d5d 888b837 29f8d5d 888b837 29f8d5d 7844008 d5eb93b 913a17b d5eb93b 05922ea d5eb93b 05922ea de89832 913a17b d5eb93b 05922ea d5eb93b de89832 01d0236 913a17b 01d0236 de89832 05922ea d5eb93b 05922ea de89832 05922ea 913a17b de89832 913a17b 05922ea 913a17b 05922ea d5eb93b 05922ea d5eb93b 234ea97 05922ea 888b837 05922ea b9897b0 d5eb93b b9895ff d5eb93b b9895ff 913a17b 05922ea 913a17b 29f8d5d 913a17b 29f8d5d 913a17b 29f8d5d 888b837 29f8d5d 888b837 29f8d5d 888b837 29f8d5d 913a17b b9895ff 913a17b d5eb93b 1059c86 913a17b d5eb93b 7b14387 4ff6c1a b9a262a 2e57f71 133976c 2e57f71 133976c 4cd2605 133976c 4cd2605 18fcf1b 2e57f71 4fa1abd 4cd2605 6da2a21 a87d6f0 3949ea1 a87d6f0 e1603e5 4864457 e1603e5 4864457 e1603e5 4864457 e1603e5 1075b3f e1603e5 03eddb7 1bf0035 27bf06e 03eddb7 2541d3c 68cd5a6 8275073 2541d3c 1bf0035 8275073 2541d3c 234ea97 29f8d5d 99193c1 5d3374e 99193c1 2541d3c 03eddb7 2541d3c 03eddb7 fe6b622 29f8d5d a87d6f0 aebf0a2 a87d6f0 1254c79 a87d6f0 fe6b622 a87d6f0 aebf0a2 1254c79 aebf0a2 1f0f3cb aebf0a2 a87d6f0 aebf0a2 1f0f3cb aebf0a2 a87d6f0 9e97a7c 03eddb7 9e97a7c 03eddb7 9e97a7c 03eddb7 bc222e3 b9a262a 9e97a7c e1603e5 b9a262a e1603e5 b9a262a e1603e5 4ff6c1a e1603e5 9e97a7c 7e14e6f 4e276c2 888b837 510865c 27bf06e 29f8d5d 27bf06e a25369d 27bf06e 29f8d5d 229101e d5eb93b 229101e d5eb93b fa4f5f7 08fb3e7 5940210 08fb3e7 fa4f5f7 ec09b7b 55b2d76 45f1473 7e14e6f 229101e ec09b7b 7e14e6f 45f1473 234ea97 7b14387 e1603e5 45f1473 229101e c58ea62 234ea97 c58ea62 261f952 0d683d7 d7392b8 7e14e6f 03eddb7 7e14e6f 03eddb7 45f1473 261f952 7e14e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
import streamlit as st
import pandas as pd
import time
import matplotlib.pyplot as plt
from openpyxl.utils.dataframe import dataframe_to_rows
import io
from rapidfuzz import fuzz
import os
from openpyxl import load_workbook
from langchain.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from io import StringIO, BytesIO
import sys
import contextlib
from langchain_openai import ChatOpenAI # Updated import
import pdfkit
from jinja2 import Template
import time
from tenacity import retry, stop_after_attempt, wait_exponential
from typing import Optional
from deep_translator import GoogleTranslator
from googletrans import Translator as LegacyTranslator
import torch
from transformers import (
pipeline,
AutoModelForSeq2SeqLM,
AutoTokenizer
)
class FallbackLLMSystem:
def __init__(self):
"""Initialize fallback models for event detection and reasoning"""
try:
# Initialize MT5 model (multilingual T5)
self.model_name = "google/mt5-small"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
# Set device
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
st.success(f"Successfully initialized MT5 model on {self.device}")
except Exception as e:
st.error(f"Error initializing MT5: {str(e)}")
raise
def detect_events(self, text, entity):
"""Detect events using MT5"""
# Initialize default return values
event_type = "Нет"
summary = ""
try:
prompt = f"""<s>Analyze news about company {entity}:
{text}
Classify event type as one of:
- Отчетность (financial reports)
- РЦБ (securities market events)
- Суд (legal actions)
- Нет (no significant events)
Format response as:
Тип: [type]
Краткое описание: [summary]</s>"""
inputs = self.tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(self.device)
outputs = self.model.generate(
**inputs,
max_length=200,
num_return_sequences=1,
do_sample=False,
pad_token_id=self.tokenizer.pad_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Parse response
if "Тип:" in response and "Краткое описание:" in response:
parts = response.split("Краткое описание:")
type_part = parts[0]
if "Тип:" in type_part:
event_type = type_part.split("Тип:")[1].strip()
# Validate event type
valid_types = ["Отчетность", "РЦБ", "Суд", "Нет"]
if event_type not in valid_types:
event_type = "Нет"
if len(parts) > 1:
summary = parts[1].strip()
return event_type, summary
except Exception as e:
st.warning(f"Event detection error: {str(e)}")
return "Нет", "Ошибка анализа"
def ensure_groq_llm():
"""Initialize Groq LLM for impact estimation"""
try:
if 'groq_key' not in st.secrets:
st.error("Groq API key not found in secrets. Please add it with the key 'groq_key'.")
return None
return ChatOpenAI(
base_url="https://api.groq.com/openai/v1",
model="llama-3.1-70b-versatile",
openai_api_key=st.secrets['groq_key'],
temperature=0.0
)
except Exception as e:
st.error(f"Error initializing Groq LLM: {str(e)}")
return None
def estimate_impact(llm, news_text, entity):
"""
Estimate impact using Groq LLM regardless of the main model choice.
Falls back to the provided LLM if Groq initialization fails.
"""
# Initialize default return values
impact = "Неопределенный эффект"
reasoning = "Не удалось получить обоснование"
try:
# Always try to use Groq first
groq_llm = ensure_groq_llm()
working_llm = groq_llm if groq_llm is not None else llm
template = """
You are a financial analyst. Analyze this news piece about {entity} and assess its potential impact.
News: {news}
Classify the impact into one of these categories:
1. "Значительный риск убытков" (Significant loss risk)
2. "Умеренный риск убытков" (Moderate loss risk)
3. "Незначительный риск убытков" (Minor loss risk)
4. "Вероятность прибыли" (Potential profit)
5. "Неопределенный эффект" (Uncertain effect)
Provide a brief, fact-based reasoning for your assessment.
Format your response exactly as:
Impact: [category]
Reasoning: [explanation in 2-3 sentences]
"""
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
chain = prompt | working_llm
response = chain.invoke({"entity": entity, "news": news_text})
# Extract content from response
response_text = response.content if hasattr(response, 'content') else str(response)
if "Impact:" in response_text and "Reasoning:" in response_text:
impact_part, reasoning_part = response_text.split("Reasoning:")
impact_temp = impact_part.split("Impact:")[1].strip()
# Validate impact category
valid_impacts = [
"Значительный риск убытков",
"Умеренный риск убытков",
"Незначительный риск убытков",
"Вероятность прибыли",
"Неопределенный эффект"
]
if impact_temp in valid_impacts:
impact = impact_temp
reasoning = reasoning_part.strip()
except Exception as e:
st.warning(f"Error in impact estimation: {str(e)}")
return impact, reasoning
class TranslationSystem:
def __init__(self, batch_size=5):
"""
Initialize translation system using Helsinki NLP model.
"""
try:
self.translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en") # Note: ru-en for Russian to English
self.batch_size = batch_size
except Exception as e:
st.error(f"Error initializing Helsinki NLP translator: {str(e)}")
raise
def translate_text(self, text):
"""
Translate single text using Helsinki NLP model with chunking for long texts.
"""
if pd.isna(text) or not isinstance(text, str) or not text.strip():
return text
text = str(text).strip()
if not text:
return text
try:
# Helsinki NLP model typically has a max length limit
max_chunk_size = 512 # Standard transformer length
if len(text.split()) <= max_chunk_size:
# Direct translation for short texts
result = self.translator(text, max_length=512)
return result[0]['translation_text']
# Split long text into chunks by sentences
chunks = self._split_into_chunks(text, max_chunk_size)
translated_chunks = []
for chunk in chunks:
result = self.translator(chunk, max_length=512)
translated_chunks.append(result[0]['translation_text'])
time.sleep(0.1) # Small delay between chunks
return ' '.join(translated_chunks)
except Exception as e:
st.warning(f"Translation error: {str(e)}. Using original text.")
return text
def _split_into_chunks(self, text, max_length):
"""
Split text into chunks by sentences, respecting max length.
"""
# Simple sentence splitting by common punctuation
sentences = [s.strip() for s in text.replace('!', '.').replace('?', '.').split('.') if s.strip()]
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
sentence_length = len(sentence.split())
if current_length + sentence_length > max_length:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = sentence_length
else:
current_chunk.append(sentence)
current_length += sentence_length
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def process_file(uploaded_file, model_choice, translation_method=None):
df = None
try:
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
llm = init_langchain_llm(model_choice)
# Add fallback initialization here
fallback_llm = FallbackLLMSystem() if model_choice != "Local-MT5" else llm
translator = TranslationSystem(batch_size=5)
# Pre-initialize Groq for impact estimation
groq_llm = ensure_groq_llm()
if groq_llm is None:
st.warning("Failed to initialize Groq LLM for impact estimation. Using fallback model.")
# Initialize all required columns first
df['Translated'] = ''
df['Sentiment'] = ''
df['Impact'] = ''
df['Reasoning'] = ''
df['Event_Type'] = ''
df['Event_Summary'] = ''
# Validate required columns
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Error: The following required columns are missing: {', '.join(missing_columns)}")
return None
# Deduplication
original_news_count = len(df)
df = df.groupby('Объект', group_keys=False).apply(
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
).reset_index(drop=True)
remaining_news_count = len(df)
duplicates_removed = original_news_count - remaining_news_count
st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")
# Initialize progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
# Process in batches
batch_size = 5
for i in range(0, len(df), batch_size):
batch_df = df.iloc[i:i+batch_size]
for idx, row in batch_df.iterrows():
try:
# Translation with Helsinki NLP
translated_text = translator.translate_text(row['Выдержки из текста'])
df.at[idx, 'Translated'] = translated_text
# Sentiment analysis
sentiment = analyze_sentiment(translated_text)
df.at[idx, 'Sentiment'] = sentiment
try:
# Try with primary LLM
event_type, event_summary = detect_events(
llm,
row['Выдержки из текста'],
row['Объект']
)
except Exception as e:
if 'rate limit' in str(e).lower():
st.warning("Rate limit reached. Using fallback model for event detection.")
event_type, event_summary = fallback_llm.detect_events(
row['Выдержки из текста'],
row['Объект']
)
df.at[idx, 'Event_Type'] = event_type
df.at[idx, 'Event_Summary'] = event_summary
# Similar for impact estimation
if sentiment == "Negative":
try:
impact, reasoning = estimate_impact(
groq_llm if groq_llm is not None else llm,
translated_text,
row['Объект']
)
df.at[idx, 'Impact'] = impact
df.at[idx, 'Reasoning'] = reasoning
except Exception as e:
if 'rate limit' in str(e).lower():
st.warning("Groq rate limit reached. Waiting before retry...")
time.sleep(240) # Wait 4 minutes
continue
df.at[idx, 'Impact'] = impact
df.at[idx, 'Reasoning'] = reasoning
# Update progress
progress = (idx + 1) / len(df)
progress_bar.progress(progress)
status_text.text(f"Проанализировано {idx + 1} из {len(df)} новостей")
except Exception as e:
if 'rate limit' in str(e).lower():
wait_time = 240 # 4 minutes wait for rate limit
st.warning(f"Rate limit reached. Waiting {wait_time} seconds...")
time.sleep(wait_time)
continue
st.warning(f"Ошибка при обработке новости {idx + 1}: {str(e)}")
continue
# Small delay between items
time.sleep(0.5)
# Delay between batches
time.sleep(2)
return df
except Exception as e:
st.error(f"❌ Ошибка при обработке файла: {str(e)}")
return None
def translate_reasoning_to_russian(llm, text):
template = """
Translate this English explanation to Russian, maintaining a formal business style:
"{text}"
Your response should contain only the Russian translation.
"""
prompt = PromptTemplate(template=template, input_variables=["text"])
chain = prompt | llm | RunnablePassthrough()
response = chain.invoke({"text": text})
# Handle different response types
if hasattr(response, 'content'):
return response.content.strip()
elif isinstance(response, str):
return response.strip()
else:
return str(response).strip()
def create_download_section(excel_data, pdf_data):
st.markdown("""
<div class="download-container">
<div class="download-header">📥 Результаты анализа доступны для скачивания:</div>
</div>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
if excel_data is not None:
st.download_button(
label="📊 Скачать Excel отчет",
data=excel_data,
file_name="результат_анализа.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key="excel_download"
)
else:
st.error("Ошибка при создании Excel файла")
def display_sentiment_results(row, sentiment, impact=None, reasoning=None):
if sentiment == "Negative":
st.markdown(f"""
<div style='color: red; font-weight: bold;'>
Объект: {row['Объект']}<br>
Новость: {row['Заголовок']}<br>
Тональность: {sentiment}<br>
{"Эффект: " + impact + "<br>" if impact else ""}
{"Обоснование: " + reasoning + "<br>" if reasoning else ""}
</div>
""", unsafe_allow_html=True)
elif sentiment == "Positive":
st.markdown(f"""
<div style='color: green; font-weight: bold;'>
Объект: {row['Объект']}<br>
Новость: {row['Заголовок']}<br>
Тональность: {sentiment}<br>
</div>
""", unsafe_allow_html=True)
else:
st.write(f"Объект: {row['Объект']}")
st.write(f"Новость: {row['Заголовок']}")
st.write(f"Тональность: {sentiment}")
st.write("---")
# Initialize sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
def analyze_sentiment(text):
finbert_result = get_mapped_sentiment(finbert(text, truncation=True, max_length=512)[0])
roberta_result = get_mapped_sentiment(roberta(text, truncation=True, max_length=512)[0])
finbert_tone_result = get_mapped_sentiment(finbert_tone(text, truncation=True, max_length=512)[0])
# Consider sentiment negative if any model says it's negative
if any(result == "Negative" for result in [finbert_result, roberta_result, finbert_tone_result]):
return "Negative"
elif all(result == "Positive" for result in [finbert_result, roberta_result, finbert_tone_result]):
return "Positive"
return "Neutral"
def analyze_sentiment(text):
finbert_result = get_mapped_sentiment(finbert(text, truncation=True, max_length=512)[0])
roberta_result = get_mapped_sentiment(roberta(text, truncation=True, max_length=512)[0])
finbert_tone_result = get_mapped_sentiment(finbert_tone(text, truncation=True, max_length=512)[0])
# Count occurrences of each sentiment
sentiments = [finbert_result, roberta_result, finbert_tone_result]
sentiment_counts = {s: sentiments.count(s) for s in set(sentiments)}
# Return sentiment if at least two models agree, otherwise return Neutral
for sentiment, count in sentiment_counts.items():
if count >= 2:
return sentiment
return "Neutral"
def detect_events(llm, text, entity):
"""
Detect events in news text. This function works with both API-based LLMs and local models.
"""
# Initialize default return values
event_type = "Нет"
summary = ""
try:
# Handle API-based LLMs (Groq, GPT-4, Qwen)
if hasattr(llm, 'invoke'):
template = """
Проанализируйте следующую новость о компании "{entity}" и определите наличие следующих событий:
1. Публикация отчетности и ключевые показатели (выручка, прибыль, EBITDA)
2. События на рынке ценных бумаг (погашение облигаций, выплата/невыплата купона, дефолт, реструктуризация)
3. Судебные иски или юридические действия против компании, акционеров, менеджеров
Новость: {text}
Ответьте в следующем формате:
Тип: ["Отчетность" или "РЦБ" или "Суд" или "Нет"]
Краткое описание: [краткое описание события на русском языке, не более 2 предложений]
"""
prompt = PromptTemplate(template=template, input_variables=["entity", "text"])
chain = prompt | llm
response = chain.invoke({"entity": entity, "text": text})
response_text = response.content if hasattr(response, 'content') else str(response)
if "Тип:" in response_text and "Краткое описание:" in response_text:
type_part, summary_part = response_text.split("Краткое описание:")
event_type_temp = type_part.split("Тип:")[1].strip()
# Validate event type
valid_types = ["Отчетность", "РЦБ", "Суд", "Нет"]
if event_type_temp in valid_types:
event_type = event_type_temp
summary = summary_part.strip()
# Handle local MT5 model
else:
# Assuming llm is FallbackLLMSystem instance
event_type, summary = llm.detect_events(text, entity)
except Exception as e:
st.warning(f"Ошибка при анализе событий: {str(e)}")
return event_type, summary
def fuzzy_deduplicate(df, column, threshold=50):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def init_langchain_llm(model_choice):
try:
if model_choice == "Groq (llama-3.1-70b)":
if 'groq_key' not in st.secrets:
st.error("Groq API key not found in secrets. Please add it with the key 'groq_key'.")
st.stop()
return ChatOpenAI(
base_url="https://api.groq.com/openai/v1",
model="llama-3.1-70b-versatile",
openai_api_key=st.secrets['groq_key'],
temperature=0.0
)
elif model_choice == "ChatGPT-4-mini":
if 'openai_key' not in st.secrets:
st.error("OpenAI API key not found in secrets. Please add it with the key 'openai_key'.")
st.stop()
return ChatOpenAI(
model="gpt-4",
openai_api_key=st.secrets['openai_key'],
temperature=0.0
)
elif model_choice == "Local-MT5": # Added new option
return FallbackLLMSystem()
else: # Qwen API
if 'ali_key' not in st.secrets:
st.error("DashScope API key not found in secrets. Please add it with the key 'dashscope_api_key'.")
st.stop()
return ChatOpenAI(
base_url="https://dashscope.aliyuncs.com/api/v1",
model="qwen-max",
openai_api_key=st.secrets['ali_key'],
temperature=0.0
)
except Exception as e:
st.error(f"Error initializing the LLM: {str(e)}")
st.stop()
def estimate_impact(llm, news_text, entity):
template = """
Analyze the following news piece about the entity "{entity}" and estimate its monetary impact in Russian rubles for this entity in the next 6 months.
If precise monetary estimate is not possible, categorize the impact as one of the following:
1. "Значительный риск убытков"
2. "Умеренный риск убытков"
3. "Незначительный риск убытков"
4. "Вероятность прибыли"
5. "Неопределенный эффект"
Provide brief reasoning (maximum 100 words).
News: {news}
Your response should be in the following format:
Impact: [Your estimate or category]
Reasoning: [Your reasoning]
"""
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
chain = prompt | llm
response = chain.invoke({"entity": entity, "news": news_text})
impact = "Неопределенный эффект"
reasoning = "Не удалось получить обоснование"
# Extract content from response
response_text = response.content if hasattr(response, 'content') else str(response)
try:
if "Impact:" in response_text and "Reasoning:" in response_text:
impact_part, reasoning_part = response_text.split("Reasoning:")
impact = impact_part.split("Impact:")[1].strip()
reasoning = reasoning_part.strip()
except Exception as e:
st.error(f"Error parsing LLM response: {str(e)}")
return impact, reasoning
def format_elapsed_time(seconds):
hours, remainder = divmod(int(seconds), 3600)
minutes, seconds = divmod(remainder, 60)
time_parts = []
if hours > 0:
time_parts.append(f"{hours} час{'ов' if hours != 1 else ''}")
if minutes > 0:
time_parts.append(f"{minutes} минут{'' if minutes == 1 else 'ы' if 2 <= minutes <= 4 else ''}")
if seconds > 0 or not time_parts:
time_parts.append(f"{seconds} секунд{'а' if seconds == 1 else 'ы' if 2 <= seconds <= 4 else ''}")
return " ".join(time_parts)
def generate_sentiment_visualization(df):
negative_df = df[df['Sentiment'] == 'Negative']
if negative_df.empty:
st.warning("Не обнаружено негативных упоминаний. Отображаем общую статистику по объектам.")
entity_counts = df['Объект'].value_counts()
else:
entity_counts = negative_df['Объект'].value_counts()
if len(entity_counts) == 0:
st.warning("Нет данных для визуализации.")
return None
fig, ax = plt.subplots(figsize=(12, max(6, len(entity_counts) * 0.5)))
entity_counts.plot(kind='barh', ax=ax)
ax.set_title('Количество негативных упоминаний по объектам')
ax.set_xlabel('Количество упоминаний')
plt.tight_layout()
return fig
def create_analysis_data(df):
analysis_data = []
for _, row in df.iterrows():
if row['Sentiment'] == 'Negative':
analysis_data.append([
row['Объект'],
row['Заголовок'],
'РИСК УБЫТКА',
row['Impact'],
row['Reasoning'],
row['Выдержки из текста']
])
return pd.DataFrame(analysis_data, columns=[
'Объект',
'Заголовок',
'Признак',
'Оценка влияния',
'Обоснование',
'Текст сообщения'
])
def create_output_file(df, uploaded_file, llm):
wb = load_workbook("sample_file.xlsx")
try:
# Update 'Мониторинг' sheet with events
ws = wb['Мониторинг']
row_idx = 4
for _, row in df.iterrows():
if row['Event_Type'] != 'Нет':
ws.cell(row=row_idx, column=5, value=row['Объект']) # Column E
ws.cell(row=row_idx, column=6, value=row['Заголовок']) # Column F
ws.cell(row=row_idx, column=7, value=row['Event_Type']) # Column G
ws.cell(row=row_idx, column=8, value=row['Event_Summary']) # Column H
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) # Column I
row_idx += 1
# Sort entities by number of negative publications
entity_stats = pd.DataFrame({
'Объект': df['Объект'].unique(),
'Всего': df.groupby('Объект').size(),
'Негативные': df[df['Sentiment'] == 'Negative'].groupby('Объект').size().fillna(0).astype(int),
'Позитивные': df[df['Sentiment'] == 'Positive'].groupby('Объект').size().fillna(0).astype(int)
}).sort_values('Негативные', ascending=False)
# Calculate most negative impact for each entity
entity_impacts = {}
for entity in df['Объект'].unique():
entity_df = df[df['Объект'] == entity]
negative_impacts = entity_df[entity_df['Sentiment'] == 'Negative']['Impact']
entity_impacts[entity] = negative_impacts.iloc[0] if len(negative_impacts) > 0 else 'Неопределенный эффект'
# Update 'Сводка' sheet
ws = wb['Сводка']
for idx, (entity, row) in enumerate(entity_stats.iterrows(), start=4):
ws.cell(row=idx, column=5, value=entity) # Column E
ws.cell(row=idx, column=6, value=row['Всего']) # Column F
ws.cell(row=idx, column=7, value=row['Негативные']) # Column G
ws.cell(row=idx, column=8, value=row['Позитивные']) # Column H
ws.cell(row=idx, column=9, value=entity_impacts[entity]) # Column I
# Update 'Значимые' sheet
ws = wb['Значимые']
row_idx = 3
for _, row in df.iterrows():
if row['Sentiment'] in ['Negative', 'Positive']:
ws.cell(row=row_idx, column=3, value=row['Объект']) # Column C
ws.cell(row=row_idx, column=4, value='релевантно') # Column D
ws.cell(row=row_idx, column=5, value=row['Sentiment']) # Column E
ws.cell(row=row_idx, column=6, value=row['Impact']) # Column F
ws.cell(row=row_idx, column=7, value=row['Заголовок']) # Column G
ws.cell(row=row_idx, column=8, value=row['Выдержки из текста']) # Column H
row_idx += 1
# Copy 'Публикации' sheet
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Update 'Анализ' sheet
ws = wb['Анализ']
row_idx = 4
for _, row in df[df['Sentiment'] == 'Negative'].iterrows():
ws.cell(row=row_idx, column=5, value=row['Объект']) # Column E
ws.cell(row=row_idx, column=6, value=row['Заголовок']) # Column F
ws.cell(row=row_idx, column=7, value="Риск убытка") # Column G
# Translate reasoning if it exists
if pd.notna(row['Reasoning']):
translated_reasoning = translate_reasoning_to_russian(llm, row['Reasoning'])
ws.cell(row=row_idx, column=8, value=translated_reasoning) # Column H
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) # Column I
row_idx += 1
# Update 'Тех.приложение' sheet
tech_df = df[['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning']]
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
except Exception as e:
st.warning(f"Ошибка при создании выходного файла: {str(e)}")
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
def main():
with st.sidebar:
st.title("::: AI-анализ мониторинга новостей (v.3.50):::")
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
model_choice = st.radio(
"Выберите модель для анализа:",
["Local-MT5", "Groq (llama-3.1-70b)", "ChatGPT-4-mini", "Qwen-Max"],
key="model_selector",
help="Local-MT5 работает без API ключей и ограничений"
)
st.markdown(
"""
Использованы технологии:
- Анализ естественного языка с помощью предтренированных нейросетей **BERT**,<br/>
- Дополнительная обработка при помощи больших языковых моделей (**LLM**),<br/>
- объединенные при помощи фреймворка **LangChain**.<br>
""",
unsafe_allow_html=True)
with st.expander("ℹ️ Инструкция"):
st.markdown("""
1. Выберите модель для анализа
2. Выберите метод перевода
3. Загрузите Excel файл с новостями
4. Дождитесь завершения анализа
5. Скачайте результаты анализа в формате Excel
""", unsafe_allow_html=True)
st.markdown(
"""
<style>
.signature {
position: fixed;
right: 12px;
up: 12px;
font-size: 14px;
color: #FF0000;
opacity: 0.9;
z-index: 999;
}
</style>
<div class="signature">denis.pokrovsky.npff</div>
""",
unsafe_allow_html=True
)
st.title("Анализ мониторинга новостей")
if 'processed_df' not in st.session_state:
st.session_state.processed_df = None
# Single file uploader with unique key
uploaded_file = st.sidebar.file_uploader("Выбирайте Excel-файл", type="xlsx", key="unique_file_uploader")
if uploaded_file is not None and st.session_state.processed_df is None:
start_time = time.time()
try:
st.session_state.processed_df = process_file(
uploaded_file,
model_choice,
translation_method='auto'
)
if st.session_state.processed_df is not None:
# Show preview with safe column access
st.subheader("Предпросмотр данных")
preview_columns = ['Объект', 'Заголовок']
if 'Sentiment' in st.session_state.processed_df.columns:
preview_columns.append('Sentiment')
if 'Impact' in st.session_state.processed_df.columns:
preview_columns.append('Impact')
preview_df = st.session_state.processed_df[preview_columns].head()
st.dataframe(preview_df)
# Show monitoring results
st.subheader("Предпросмотр мониторинга событий и риск-факторов эмитентов")
if 'Event_Type' in st.session_state.processed_df.columns:
monitoring_df = st.session_state.processed_df[
(st.session_state.processed_df['Event_Type'] != 'Нет') &
(st.session_state.processed_df['Event_Type'].notna())
][['Объект', 'Заголовок', 'Event_Type', 'Event_Summary']].head()
if len(monitoring_df) > 0:
st.dataframe(monitoring_df)
else:
st.info("Не обнаружено значимых событий для мониторинга")
# Create analysis data
analysis_df = create_analysis_data(st.session_state.processed_df)
st.subheader("Анализ")
st.dataframe(analysis_df)
else:
st.error("Ошибка при обработке файла")
except Exception as e:
st.error(f"Ошибка при обработке файла: {str(e)}")
st.session_state.processed_df = None
output = create_output_file(
st.session_state.processed_df,
uploaded_file,
init_langchain_llm(model_choice) # Initialize new LLM instance
)
end_time = time.time()
elapsed_time = end_time - start_time
formatted_time = format_elapsed_time(elapsed_time)
st.success(f"Обработка и анализ завершены за {formatted_time}.")
st.download_button(
label="Скачать результат анализа",
data=output,
file_name="результат_анализа.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if __name__ == "__main__":
main() |