Spaces:
Running
Running
Commit
·
913a17b
1
Parent(s):
0cc6350
3.38 hard coded trans
Browse files
app.py
CHANGED
@@ -22,177 +22,54 @@ from typing import Optional
|
|
22 |
from deep_translator import GoogleTranslator as DeepGoogleTranslator
|
23 |
from googletrans import Translator as LegacyTranslator
|
24 |
|
|
|
25 |
class TranslationSystem:
|
26 |
-
def __init__(self,
|
27 |
"""
|
28 |
-
Initialize translation system
|
29 |
-
|
30 |
-
Args:
|
31 |
-
method: str - Translation method to use ('auto', 'deep-google', or 'llm')
|
32 |
-
llm: Optional LangChain LLM instance
|
33 |
-
batch_size: int - Number of texts to process in each batch
|
34 |
"""
|
35 |
-
self.method = method
|
36 |
-
self.llm = llm
|
37 |
self.batch_size = batch_size
|
38 |
-
self.translator =
|
39 |
-
self._initialize_translator()
|
40 |
-
|
41 |
-
def _initialize_translator(self):
|
42 |
-
if self.method == 'llm':
|
43 |
-
if not self.llm:
|
44 |
-
raise Exception("LLM must be provided when using 'llm' method")
|
45 |
-
return
|
46 |
-
|
47 |
-
try:
|
48 |
-
# Try deep-translator first
|
49 |
-
self.translator = DeepGoogleTranslator()
|
50 |
-
self.method = 'deep-google'
|
51 |
-
# Test translation
|
52 |
-
test_result = self.translator.translate(text='test', source='ru', target='en')
|
53 |
-
if not test_result:
|
54 |
-
raise Exception("Deep translator test failed")
|
55 |
-
|
56 |
-
except Exception as deep_e:
|
57 |
-
st.warning(f"Deep-translator initialization failed: {str(deep_e)}")
|
58 |
-
|
59 |
-
if self.llm:
|
60 |
-
st.info("Falling back to LLM translation")
|
61 |
-
self.method = 'llm'
|
62 |
-
else:
|
63 |
-
raise Exception("No translation method available")
|
64 |
-
|
65 |
-
def translate_batch(self, texts, src='ru', dest='en'):
|
66 |
-
"""
|
67 |
-
Translate a batch of texts with fallback options.
|
68 |
-
"""
|
69 |
-
translations = []
|
70 |
-
for i in range(0, len(texts), self.batch_size):
|
71 |
-
batch = texts[i:i + self.batch_size]
|
72 |
-
batch_translations = []
|
73 |
-
|
74 |
-
for text in batch:
|
75 |
-
try:
|
76 |
-
if not isinstance(text, str):
|
77 |
-
batch_translations.append(str(text))
|
78 |
-
continue
|
79 |
-
|
80 |
-
translation = self._translate_single_text(text, src, dest)
|
81 |
-
batch_translations.append(translation)
|
82 |
-
|
83 |
-
except Exception as e:
|
84 |
-
st.warning(f"Translation error: {str(e)}. Using original text.")
|
85 |
-
batch_translations.append(text)
|
86 |
-
|
87 |
-
# Try LLM fallback if available
|
88 |
-
if self.method != 'llm' and self.llm:
|
89 |
-
try:
|
90 |
-
st.info("Attempting LLM translation fallback...")
|
91 |
-
temp_method = self.method
|
92 |
-
self.method = 'llm'
|
93 |
-
translation = self._translate_single_text(text, src, dest)
|
94 |
-
batch_translations[-1] = translation
|
95 |
-
self.method = temp_method
|
96 |
-
except Exception as llm_e:
|
97 |
-
st.warning(f"LLM fallback failed: {str(llm_e)}")
|
98 |
-
|
99 |
-
translations.extend(batch_translations)
|
100 |
-
time.sleep(1)
|
101 |
-
|
102 |
-
return translations
|
103 |
|
104 |
-
def
|
105 |
"""
|
106 |
-
Translate
|
107 |
"""
|
108 |
if pd.isna(text) or not isinstance(text, str) or not text.strip():
|
109 |
return text
|
110 |
|
111 |
-
text = text.strip()
|
112 |
-
|
113 |
-
|
114 |
-
return self._translate_with_llm(text, src, dest)
|
115 |
-
elif self.method == 'deep-google':
|
116 |
-
return self._translate_with_deep_google(text, src, dest)
|
117 |
-
else:
|
118 |
-
raise Exception(f"Unsupported translation method: {self.method}")
|
119 |
|
120 |
-
def _translate_with_deep_google(self, text, src='ru', dest='en'):
|
121 |
-
"""
|
122 |
-
Translate using deep-translator's Google Translate.
|
123 |
-
"""
|
124 |
try:
|
125 |
-
# deep-translator
|
126 |
-
|
127 |
-
dest = dest.lower()
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
if len(text) > max_length:
|
132 |
-
chunks = [text[i:i+max_length] for i in range(0, len(text), max_length)]
|
133 |
-
translated_chunks = []
|
134 |
-
for chunk in chunks:
|
135 |
-
translated_chunk = self.translator.translate(
|
136 |
-
text=chunk,
|
137 |
-
source=src,
|
138 |
-
target=dest
|
139 |
-
)
|
140 |
-
translated_chunks.append(translated_chunk)
|
141 |
-
return ' '.join(translated_chunks)
|
142 |
-
else:
|
143 |
-
return self.translator.translate(
|
144 |
-
text=text,
|
145 |
-
source=src,
|
146 |
-
target=dest
|
147 |
-
)
|
148 |
-
|
149 |
-
except Exception as e:
|
150 |
-
raise Exception(f"Deep-translator error: {str(e)}")
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
"""
|
156 |
-
if not self.llm:
|
157 |
-
raise Exception("LLM not initialized for translation")
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
Initialize translation system with appropriate configuration.
|
170 |
-
"""
|
171 |
-
llm = init_langchain_llm(model_choice) if translation_method != 'deep-google' else None
|
172 |
-
|
173 |
-
try:
|
174 |
-
translator = TranslationSystem(
|
175 |
-
method=translation_method,
|
176 |
-
llm=llm,
|
177 |
-
batch_size=5
|
178 |
-
)
|
179 |
-
return translator
|
180 |
-
except Exception as e:
|
181 |
-
st.error(f"Failed to initialize translation system: {str(e)}")
|
182 |
-
raise
|
183 |
|
184 |
-
def process_file(uploaded_file, model_choice
|
185 |
df = None
|
186 |
try:
|
187 |
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
|
188 |
llm = init_langchain_llm(model_choice)
|
189 |
-
|
190 |
-
# Initialize translation system
|
191 |
-
translator = TranslationSystem(
|
192 |
-
method=translation_method, # Remove quotes from parameter name
|
193 |
-
llm=llm,
|
194 |
-
batch_size=5
|
195 |
-
)
|
196 |
|
197 |
# Validate required columns
|
198 |
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
|
@@ -228,52 +105,53 @@ def process_file(uploaded_file, model_choice, translation_method='auto'):
|
|
228 |
for i in range(0, len(df), batch_size):
|
229 |
batch_df = df.iloc[i:i+batch_size]
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
llm,
|
247 |
-
|
248 |
row['Объект']
|
249 |
)
|
250 |
-
df.at[idx, '
|
251 |
-
df.at[idx, '
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
row['Объект']
|
258 |
-
)
|
259 |
-
df.at[idx, 'Impact'] = impact
|
260 |
-
df.at[idx, 'Reasoning'] = reasoning
|
261 |
-
|
262 |
-
# Update progress
|
263 |
-
progress = (i + j + 1) / len(df)
|
264 |
-
progress_bar.progress(progress)
|
265 |
-
status_text.text(f"Проанализировано {i + j + 1} из {len(df)} новостей")
|
266 |
-
|
267 |
-
except Exception as e:
|
268 |
-
st.warning(f"Ошибка при обработке новости {idx + 1}: {str(e)}")
|
269 |
-
continue
|
270 |
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
277 |
|
278 |
return df
|
279 |
|
@@ -677,7 +555,7 @@ def create_output_file(df, uploaded_file, llm):
|
|
677 |
|
678 |
def main():
|
679 |
with st.sidebar:
|
680 |
-
st.title("::: AI-анализ мониторинга новостей (v.3.
|
681 |
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
|
682 |
|
683 |
model_choice = st.radio(
|
|
|
22 |
from deep_translator import GoogleTranslator as DeepGoogleTranslator
|
23 |
from googletrans import Translator as LegacyTranslator
|
24 |
|
25 |
+
|
26 |
class TranslationSystem:
|
27 |
+
def __init__(self, batch_size=5):
|
28 |
"""
|
29 |
+
Initialize translation system using only deep-translator.
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
|
|
|
|
31 |
self.batch_size = batch_size
|
32 |
+
self.translator = GoogleTranslator(source='russian', target='english') # Using full language names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
def translate_text(self, text):
|
35 |
"""
|
36 |
+
Translate single text using deep-translator with chunking for long texts.
|
37 |
"""
|
38 |
if pd.isna(text) or not isinstance(text, str) or not text.strip():
|
39 |
return text
|
40 |
|
41 |
+
text = str(text).strip()
|
42 |
+
if not text:
|
43 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
|
|
|
|
|
|
45 |
try:
|
46 |
+
# deep-translator has a character limit, so we need to chunk long texts
|
47 |
+
max_chunk_size = 4500 # Deep translator limit is 5000, using 4500 to be safe
|
|
|
48 |
|
49 |
+
if len(text) <= max_chunk_size:
|
50 |
+
return self.translator.translate(text=text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Split long text into chunks
|
53 |
+
chunks = [text[i:i + max_chunk_size] for i in range(0, len(text), max_chunk_size)]
|
54 |
+
translated_chunks = []
|
|
|
|
|
|
|
55 |
|
56 |
+
for chunk in chunks:
|
57 |
+
translated_chunk = self.translator.translate(text=chunk)
|
58 |
+
translated_chunks.append(translated_chunk)
|
59 |
+
time.sleep(0.5) # Small delay between chunks
|
60 |
+
|
61 |
+
return ' '.join(translated_chunks)
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
st.warning(f"Translation error: {str(e)}. Using original text.")
|
65 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
def process_file(uploaded_file, model_choice):
|
68 |
df = None
|
69 |
try:
|
70 |
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
|
71 |
llm = init_langchain_llm(model_choice)
|
72 |
+
translator = TranslationSystem(batch_size=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
# Validate required columns
|
75 |
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
|
|
|
105 |
for i in range(0, len(df), batch_size):
|
106 |
batch_df = df.iloc[i:i+batch_size]
|
107 |
|
108 |
+
for idx, row in batch_df.iterrows():
|
109 |
+
try:
|
110 |
+
# Translation
|
111 |
+
translated_text = translator.translate_text(row['Выдержки из текста'])
|
112 |
+
df.at[idx, 'Translated'] = translated_text
|
113 |
+
|
114 |
+
# Sentiment analysis
|
115 |
+
sentiment = analyze_sentiment(translated_text)
|
116 |
+
df.at[idx, 'Sentiment'] = sentiment
|
117 |
+
|
118 |
+
# Event detection
|
119 |
+
event_type, event_summary = detect_events(
|
120 |
+
llm,
|
121 |
+
row['Выдержки из текста'],
|
122 |
+
row['Объект']
|
123 |
+
)
|
124 |
+
df.at[idx, 'Event_Type'] = event_type
|
125 |
+
df.at[idx, 'Event_Summary'] = event_summary
|
126 |
+
|
127 |
+
if sentiment == "Negative":
|
128 |
+
impact, reasoning = estimate_impact(
|
129 |
llm,
|
130 |
+
translated_text,
|
131 |
row['Объект']
|
132 |
)
|
133 |
+
df.at[idx, 'Impact'] = impact
|
134 |
+
df.at[idx, 'Reasoning'] = reasoning
|
135 |
+
|
136 |
+
# Update progress
|
137 |
+
progress = (idx + 1) / len(df)
|
138 |
+
progress_bar.progress(progress)
|
139 |
+
status_text.text(f"Проанализировано {idx + 1} из {len(df)} новостей")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
except Exception as e:
|
142 |
+
if 'rate limit' in str(e).lower():
|
143 |
+
wait_time = 240 # 4 minutes wait for rate limit
|
144 |
+
st.warning(f"Rate limit reached. Waiting {wait_time} seconds...")
|
145 |
+
time.sleep(wait_time)
|
146 |
+
continue
|
147 |
+
st.warning(f"Ошибка при обработке новости {idx + 1}: {str(e)}")
|
148 |
+
continue
|
149 |
|
150 |
+
# Small delay between items to avoid rate limits
|
151 |
+
time.sleep(0.5)
|
152 |
+
|
153 |
+
# Delay between batches
|
154 |
+
time.sleep(2)
|
155 |
|
156 |
return df
|
157 |
|
|
|
555 |
|
556 |
def main():
|
557 |
with st.sidebar:
|
558 |
+
st.title("::: AI-анализ мониторинга новостей (v.3.38 ):::")
|
559 |
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
|
560 |
|
561 |
model_choice = st.radio(
|